Harmonic functions for singular quadrant walks

Pub Date : 2023-09-01 DOI:10.1016/j.indag.2023.06.002
Viet Hung Hoang , Kilian Raschel , Pierre Tarrago
{"title":"Harmonic functions for singular quadrant walks","authors":"Viet Hung Hoang ,&nbsp;Kilian Raschel ,&nbsp;Pierre Tarrago","doi":"10.1016/j.indag.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>We consider discrete (time and space) random walks confined to the quarter plane, with jumps only in directions <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span> with <span><math><mrow><mi>i</mi><mo>+</mo><mi>j</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and small negative jumps, i.e., <span><math><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span><span><span>. These walks are called singular, and were recently intensively studied from a combinatorial point of view. In this paper, we show how the compensation approach introduced in the 90ies by Adan, Wessels and Zijm may be applied to compute positive harmonic functions with </span>Dirichlet boundary conditions<span>. In particular, in case the random walks have a drift with positive coordinates, we derive an explicit formula for the escape probability, which is the probability to tend to infinity without reaching the boundary axes. These formulas typically involve famous recurrent sequences, such as the Fibonacci numbers. As a second step, we propose a probabilistic interpretation of the previously constructed harmonic functions and prove that they allow us to compute all positive harmonic functions of these singular walks. To that purpose, we derive the asymptotics of the Green functions in all directions of the quarter plane and use Martin boundary theory.</span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider discrete (time and space) random walks confined to the quarter plane, with jumps only in directions (i,j) with i+j0 and small negative jumps, i.e., i,j1. These walks are called singular, and were recently intensively studied from a combinatorial point of view. In this paper, we show how the compensation approach introduced in the 90ies by Adan, Wessels and Zijm may be applied to compute positive harmonic functions with Dirichlet boundary conditions. In particular, in case the random walks have a drift with positive coordinates, we derive an explicit formula for the escape probability, which is the probability to tend to infinity without reaching the boundary axes. These formulas typically involve famous recurrent sequences, such as the Fibonacci numbers. As a second step, we propose a probabilistic interpretation of the previously constructed harmonic functions and prove that they allow us to compute all positive harmonic functions of these singular walks. To that purpose, we derive the asymptotics of the Green functions in all directions of the quarter plane and use Martin boundary theory.

分享
查看原文
奇异象限行走的调和函数
我们考虑限于四分之一平面的离散(时间和空间)随机漫步,仅在(i,j)方向上跳跃,且i+j≥0,并且小的负跳跃,即i,j≥- 1。这些行走被称为奇异行走,最近人们从组合的角度对它们进行了深入的研究。在本文中,我们展示了如何将adam, Wessels和Zijm在20世纪90年代引入的补偿方法应用于计算具有Dirichlet边界条件的正调和函数。特别地,当随机漫步具有正坐标漂移时,我们导出了逃逸概率的显式公式,逃逸概率是在没有到达边界轴的情况下趋于无穷大的概率。这些公式通常涉及著名的循环序列,如斐波那契数列。作为第二步,我们提出了先前构造的调和函数的概率解释,并证明它们允许我们计算这些奇异行走的所有正调和函数。为此,我们利用马丁边界理论,导出了格林函数在四分之一平面各方向上的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信