On hereditarily self-similar $p$-adic analytic pro-$p$ groups

Pub Date : 2020-02-06 DOI:10.4171/ggd/641
Francesco Noseda, I. Snopce
{"title":"On hereditarily self-similar $p$-adic analytic pro-$p$ groups","authors":"Francesco Noseda, I. Snopce","doi":"10.4171/ggd/641","DOIUrl":null,"url":null,"abstract":"A non-trivial finitely generated pro-$p$ group $G$ is said to be strongly hereditarily self-similar of index $p$ if every non-trivial finitely generated closed subgroup of $G$ admits a faithful self-similar action on a $p$-ary tree. We classify the solvable torsion-free $p$-adic analytic pro-$p$ groups of dimension less than $p$ that are strongly hereditarily self-similar of index $p$. Moreover, we show that a solvable torsion-free $p$-adic analytic pro-$p$ group of dimension less than $p$ is strongly hereditarily self-similar of index $p$ if and only if it is isomorphic to the maximal pro-$p$ Galois group of some field that contains a primitive $p$-th root of unity. As a key step for the proof of the above results, we classify the 3-dimensional solvable torsion-free $p$-adic analytic pro-$p$ groups that admit a faithful self-similar action on a $p$-ary tree, completing the classification of the 3-dimensional torsion-free $p$-adic analytic pro-$p$ groups that admit such actions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A non-trivial finitely generated pro-$p$ group $G$ is said to be strongly hereditarily self-similar of index $p$ if every non-trivial finitely generated closed subgroup of $G$ admits a faithful self-similar action on a $p$-ary tree. We classify the solvable torsion-free $p$-adic analytic pro-$p$ groups of dimension less than $p$ that are strongly hereditarily self-similar of index $p$. Moreover, we show that a solvable torsion-free $p$-adic analytic pro-$p$ group of dimension less than $p$ is strongly hereditarily self-similar of index $p$ if and only if it is isomorphic to the maximal pro-$p$ Galois group of some field that contains a primitive $p$-th root of unity. As a key step for the proof of the above results, we classify the 3-dimensional solvable torsion-free $p$-adic analytic pro-$p$ groups that admit a faithful self-similar action on a $p$-ary tree, completing the classification of the 3-dimensional torsion-free $p$-adic analytic pro-$p$ groups that admit such actions.
分享
查看原文
关于遗传自相似$p$adic分析pro-$p$群
如果$G$的每个非平凡有限生成闭子群在$p$树上都允许忠实的自相似作用,则称一个非平凡有限产生亲$p$群$G$是索引$p$的强遗传自相似。我们对维数小于$p$的可解无扭$p$-adic分析pro-$p$群进行了分类,这些群与指数$p$具有强遗传自相似性。此外,我们还证明了一个维数小于$p$的可解无扭$p$adic分析pro-$p$群与索引$p$是强遗传自相似的,当且仅当它同构于某个域的最大pro-p$Galois群,该群包含一个原始的$p$th单位根。作为证明上述结果的关键步骤,我们对在$p$-ary树上承认忠实自相似作用的三维可解无扭$p$-dic分析pro-p$群进行了分类,完成了对承认这种作用的三维无扭$p$-dic解析pro-p$组的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信