Stress analysis of infinite laminated composite plate with elliptical cutout under different in plane loadings in hygrothermal environment

IF 1.1 Q4 MECHANICS
A. Magar, A. Lal
{"title":"Stress analysis of infinite laminated composite plate with elliptical cutout under different in plane loadings in hygrothermal environment","authors":"A. Magar, A. Lal","doi":"10.1515/cls-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the solution of stress distribution around elliptical cutout in an infinite laminated composite plate. Analysis is done for in plane loading under hygrothermal environment. The formulation to obtain stresses around elliptical hole is based on Muskhelishvili’s complex variable method. The effect of fibre angle, type of in plane loading, volume fraction of fibre, change in temperature, fibre materials, stacking sequence and environmental conditions on stress distribution around elliptical hole is presented. The study revealed, these factors have significant effect on stress concentration in hygrothermal environment and stress concentration changes are significant with change in temperature.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"1 - 12"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0001","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper presents the solution of stress distribution around elliptical cutout in an infinite laminated composite plate. Analysis is done for in plane loading under hygrothermal environment. The formulation to obtain stresses around elliptical hole is based on Muskhelishvili’s complex variable method. The effect of fibre angle, type of in plane loading, volume fraction of fibre, change in temperature, fibre materials, stacking sequence and environmental conditions on stress distribution around elliptical hole is presented. The study revealed, these factors have significant effect on stress concentration in hygrothermal environment and stress concentration changes are significant with change in temperature.
水热环境下不同平面载荷下椭圆切口无限层合复合材料板的应力分析
摘要本文给出了无限层合复合材料板椭圆切口周围应力分布的求解方法。对湿热环境下的平面载荷进行了分析。椭圆孔周围应力的计算公式基于Muskhelishvili的复变量法。讨论了纤维角度、平面载荷类型、纤维体积分数、温度变化、纤维材料、堆积顺序和环境条件对椭圆孔周围应力分布的影响。研究表明,这些因素对湿热环境下的应力集中有显著影响,且应力集中随温度变化显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信