{"title":"Tail variance allocation, Shapley value, and the majorization problem","authors":"M. Galeotti, Giovanni Rabitti","doi":"10.1017/jpr.2023.28","DOIUrl":null,"url":null,"abstract":"\n With a focus on the risk contribution in a portofolio of dependent risks, Colini-Baldeschi et al. (2018) introduced Shapley values for variance and standard deviation games. In this note we extend their results, introducing tail variance as well as tail standard deviation games. We derive closed-form expressions for the Shapley values for the tail variance game and we analyze the vector majorization problem for the two games. In particular, we construct two examples showing that the risk contribution rankings for the two games may be inverted depending on the conditioning threshold and the tail fatness. Motivated by these examples, we formulate a conjecture for general portfolios. Lastly, we discuss risk management implications, including the characterization of tail covariance premiums and reinsurance pricing for peer-to-peer insurance policies.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With a focus on the risk contribution in a portofolio of dependent risks, Colini-Baldeschi et al. (2018) introduced Shapley values for variance and standard deviation games. In this note we extend their results, introducing tail variance as well as tail standard deviation games. We derive closed-form expressions for the Shapley values for the tail variance game and we analyze the vector majorization problem for the two games. In particular, we construct two examples showing that the risk contribution rankings for the two games may be inverted depending on the conditioning threshold and the tail fatness. Motivated by these examples, we formulate a conjecture for general portfolios. Lastly, we discuss risk management implications, including the characterization of tail covariance premiums and reinsurance pricing for peer-to-peer insurance policies.