Soledad Zabala, Andrés Averbuj, Gregorio Bigatti, Pablo E. Penchaszadeh
{"title":"Embryonic development of the false limpet Siphonaria lateralis from Atlantic Patagonia","authors":"Soledad Zabala, Andrés Averbuj, Gregorio Bigatti, Pablo E. Penchaszadeh","doi":"10.1111/ivb.12276","DOIUrl":null,"url":null,"abstract":"<p>Siphonariids are pulmonate gastropods inhabiting rocky intertidal habitats, and many studies have focused on these false limpets around the world. In the southern South Atlantic, studies on reproduction and development in species of <i>Siphonaria</i> are scarce. We studied the embryonic development and egg masses of <i>Siphonaria lateralis</i> at its northernmost distribution in Atlantic Patagonia<i>.</i> In <i>S. lateralis</i>, as in most species of <i>Siphonaria</i>, individuals spawn benthic egg masses that strongly attach to intertidal rocky substrata. A single spherical egg that measures ~120 µm develops inside the egg capsule of <i>S. lateralis</i>. Considering the relatively small egg size, and reports from previous studies, the developmental modality of <i>S. lateralis</i> might be expected to include a planktotrophic larval phase. However, we found that hatchlings emerged as 1-mm crawling juveniles, probably owing to the presence of intracapsular fluid, which may provide the energetic requirements for direct development. The embryonic size changed little from the egg to veliger stages, and then increased rapidly until the hatchling stage. We compared development in <i>S. lateralis</i> with development in the sympatric <i>Siphonaria lessonii</i>, in which egg size was reported to be ~80 µm and hatching occurs as planktotrophic veliger larvae. In these two species, spawn and early intracapsular developmental modes are remarkably different; these differences represent contrasting ways to survive in the harsh and physically stressful intertidal Patagonian coasts.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":"139 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ivb.12276","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12276","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Siphonariids are pulmonate gastropods inhabiting rocky intertidal habitats, and many studies have focused on these false limpets around the world. In the southern South Atlantic, studies on reproduction and development in species of Siphonaria are scarce. We studied the embryonic development and egg masses of Siphonaria lateralis at its northernmost distribution in Atlantic Patagonia. In S. lateralis, as in most species of Siphonaria, individuals spawn benthic egg masses that strongly attach to intertidal rocky substrata. A single spherical egg that measures ~120 µm develops inside the egg capsule of S. lateralis. Considering the relatively small egg size, and reports from previous studies, the developmental modality of S. lateralis might be expected to include a planktotrophic larval phase. However, we found that hatchlings emerged as 1-mm crawling juveniles, probably owing to the presence of intracapsular fluid, which may provide the energetic requirements for direct development. The embryonic size changed little from the egg to veliger stages, and then increased rapidly until the hatchling stage. We compared development in S. lateralis with development in the sympatric Siphonaria lessonii, in which egg size was reported to be ~80 µm and hatching occurs as planktotrophic veliger larvae. In these two species, spawn and early intracapsular developmental modes are remarkably different; these differences represent contrasting ways to survive in the harsh and physically stressful intertidal Patagonian coasts.
期刊介绍:
Invertebrate Biology presents fundamental advances in our understanding of the structure, function, ecology, and evolution of the invertebrates, which represent the vast majority of animal diversity. Though ultimately organismal in focus, the journal publishes manuscripts addressing phenomena at all levels of biological organization. Invertebrate Biology welcomes manuscripts addressing the biology of invertebrates from diverse perspectives, including those of:
• genetics, cell, and molecular biology
• morphology and biomechanics
• reproduction and development
• physiology and behavior
• ecology
• evolution and phylogenetics