Multiplicative Sombor Index of Graphs

IF 1 Q1 MATHEMATICS
Hechao Liu
{"title":"Multiplicative Sombor Index of Graphs","authors":"Hechao Liu","doi":"10.47443/dml.2021.s213","DOIUrl":null,"url":null,"abstract":"The Sombor index of a graph G is defined as SO ( G ) = (cid:80) uv ∈ E ( G ) (cid:112) d 2 G ( u ) + d 2 G ( v ) , where d G ( u ) denotes the degree of the vertex u of G . Accordingly, the multiplicative Sombor index of G can be defined as (cid:81) SO ( G ) = (cid:81) uv ∈ E ( G ) (cid:112) d 2 G ( u ) + d 2 G ( v ) . In this article, some graph transformations which increase or decrease the multiplicative Sombor index are first introduced. Then by using these transformations, extremal values of the multiplicative Sombor index of trees and unicyclic graphs are determined.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.s213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The Sombor index of a graph G is defined as SO ( G ) = (cid:80) uv ∈ E ( G ) (cid:112) d 2 G ( u ) + d 2 G ( v ) , where d G ( u ) denotes the degree of the vertex u of G . Accordingly, the multiplicative Sombor index of G can be defined as (cid:81) SO ( G ) = (cid:81) uv ∈ E ( G ) (cid:112) d 2 G ( u ) + d 2 G ( v ) . In this article, some graph transformations which increase or decrease the multiplicative Sombor index are first introduced. Then by using these transformations, extremal values of the multiplicative Sombor index of trees and unicyclic graphs are determined.
图的乘性Sombor指数
图G的Sombor指数被定义为SO(G)=(cid:80)uv∈E(G)(cid:112)d2 G(u)+d2 G(v),其中d G(u)表示G的顶点u的阶。因此,G的乘法Sombor指数可以定义为(cid:81)SO(G)=(cid:81)uv∈E(G)(cid:112)d2 G(u)+d2 G(v)。本文首先介绍了一些增加或减少乘性Sombor指数的图变换。然后利用这些变换,确定了树和单圈图的乘性Sombor指数的极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信