Xin-Bo Zhang, Cheng-Long Zhou, Feng Gu, Xiao-Ping Luo, Yong Zhang, H. Yi
{"title":"Medium-Bridge Near-Field Thermophotovoltaic System","authors":"Xin-Bo Zhang, Cheng-Long Zhou, Feng Gu, Xiao-Ping Luo, Yong Zhang, H. Yi","doi":"10.1080/15567265.2023.2202699","DOIUrl":null,"url":null,"abstract":"ABSTRACT The energy conversion performance of thermophotovoltaic (TPV) systems can be improved when the vacuum gap between the emitter and the TPV cell is at the near-field owing to the photon tunneling of evanescent waves. Among them, the back-gapped-reflector TPV systems have gained interest as a method of improving their conversion efficiency by optimizing the spectral absorption of TPV cells. In this work, we introduce an alternative concept for the back-gapped-reflector TPV systems, namely the medium-bridge near-field TPV system, by building a medium bridge between the metal reflector and the TPV cell using SU8 nanofilm. The SU8 medium-bridge achieves a noticeable improvement in output performance by increasing the spectral absorption of the InAs cell and reducing parasitic absorption losses of the Au substrate. The results indicate that, as a consequence of the improved effect of the medium-bridge, the output power density and efficiency of this system exceed those of the conventional TPV system (which lacks a medium-bridge) by 26.4% and 36.5%, respectively. Moreover, we systematically analyze the modulation of medium-bridge thicknesses and cell thickness on output performance and clarify how both affect energy losses of this near-field TPV system. Our work offers a strategy to improve the energy conversion performance of the near-field TPV system, opening new opportunities for developing near-field energy conversion.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"27 1","pages":"195 - 207"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2023.2202699","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The energy conversion performance of thermophotovoltaic (TPV) systems can be improved when the vacuum gap between the emitter and the TPV cell is at the near-field owing to the photon tunneling of evanescent waves. Among them, the back-gapped-reflector TPV systems have gained interest as a method of improving their conversion efficiency by optimizing the spectral absorption of TPV cells. In this work, we introduce an alternative concept for the back-gapped-reflector TPV systems, namely the medium-bridge near-field TPV system, by building a medium bridge between the metal reflector and the TPV cell using SU8 nanofilm. The SU8 medium-bridge achieves a noticeable improvement in output performance by increasing the spectral absorption of the InAs cell and reducing parasitic absorption losses of the Au substrate. The results indicate that, as a consequence of the improved effect of the medium-bridge, the output power density and efficiency of this system exceed those of the conventional TPV system (which lacks a medium-bridge) by 26.4% and 36.5%, respectively. Moreover, we systematically analyze the modulation of medium-bridge thicknesses and cell thickness on output performance and clarify how both affect energy losses of this near-field TPV system. Our work offers a strategy to improve the energy conversion performance of the near-field TPV system, opening new opportunities for developing near-field energy conversion.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.