Computing generalized hamming weights of binary linear codes via free resolutions

IF 0.4 Q4 MATHEMATICS, APPLIED
Ignacio García-Marco, Irene Márquez-Corbella, E. Martínez-Moro, Yuriko Pitones
{"title":"Computing generalized hamming weights of binary linear codes via free resolutions","authors":"Ignacio García-Marco, Irene Márquez-Corbella, E. Martínez-Moro, Yuriko Pitones","doi":"10.1145/3572867.3572868","DOIUrl":null,"url":null,"abstract":"In this work, we explore the relationship between free resolution of some monomial ideals and Generalized Hamming Weights (GHWs) of binary codes. More precisely, we look for a structure smaller than the set of codewords of minimal support that provides us some information about the GHWs. We prove that the first and second generalized Hamming weight of a binary linear code can be computed (by means of a graded free resolution) from a set of monomials associated to a binomial ideal related with the code. Moreover, the remaining weights are bounded by the Betti numbers for that set.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"19 - 24"},"PeriodicalIF":0.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572867.3572868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we explore the relationship between free resolution of some monomial ideals and Generalized Hamming Weights (GHWs) of binary codes. More precisely, we look for a structure smaller than the set of codewords of minimal support that provides us some information about the GHWs. We prove that the first and second generalized Hamming weight of a binary linear code can be computed (by means of a graded free resolution) from a set of monomials associated to a binomial ideal related with the code. Moreover, the remaining weights are bounded by the Betti numbers for that set.
利用自由分辨率计算二进制线性码的广义汉明权重
在这项工作中,我们探索了一些单项式理想的自由分辨率与二进制码的广义汉明权重(GHW)之间的关系。更准确地说,我们寻找一个比最小支持的码字集更小的结构,为我们提供一些关于GHW的信息。我们证明了二元线性码的第一和第二广义汉明权可以(通过分级自由分辨率)从与该码相关的二项式理想相关的一组单项式中计算出来。此外,剩余的权重受该集合的Betti数的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信