On supersingular perturbations of non-semibounded self-adjoint operators

IF 0.7 4区 数学 Q2 MATHEMATICS
P. Kurasov, Annemarie Luger, Christoph Neuner
{"title":"On supersingular perturbations of non-semibounded self-adjoint operators","authors":"P. Kurasov, Annemarie Luger, Christoph Neuner","doi":"10.7900/jot.2017dec22.2183","DOIUrl":null,"url":null,"abstract":"In this paper self-adjoint realizations of the formal expression Aα:=A+α⟨ϕ,⋅⟩ϕ are described, where α∈R∪{∞}, the operator A is self-adjoint in a Hilbert space H and ϕ is a supersingular element from the scale space H−n−2(A)∖H−n−1(A) for n⩾1. The crucial point is that the spectrum of A may consist of the whole real line. We construct two models to describe the family (Aα). It can be interpreted in a Hilbert space with a twisted version of Krein's formula, or with a more classical version of Krein's formula but in a Pontryagin space. Finally, we compare the two approaches in terms of the respective Q-functions.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2017dec22.2183","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper self-adjoint realizations of the formal expression Aα:=A+α⟨ϕ,⋅⟩ϕ are described, where α∈R∪{∞}, the operator A is self-adjoint in a Hilbert space H and ϕ is a supersingular element from the scale space H−n−2(A)∖H−n−1(A) for n⩾1. The crucial point is that the spectrum of A may consist of the whole real line. We construct two models to describe the family (Aα). It can be interpreted in a Hilbert space with a twisted version of Krein's formula, or with a more classical version of Krein's formula but in a Pontryagin space. Finally, we compare the two approaches in terms of the respective Q-functions.
非半有界自伴随算子的超奇异摄动
在本文中描述了形式表达式Aα:=A+α⟨ϕ,⋅⟩ϕ的自伴随实现,其中α∈R∪{∞},算子A在希尔伯特空间H中自伴随,并且对于n大于或等于1,φ是来自尺度空间H−n−2(A)≠H−n−1(A)的超奇异元素。关键的一点是,A的谱可以由整个实线组成。我们构建了两个模型来描述族(Aα)。它可以在希尔伯特空间中用Krein公式的扭曲版本来解释,或者用Krein公式的更经典的版本在庞特里亚金空间中解释。最后,我们根据各自的q函数比较了这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信