{"title":"Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions","authors":"Van Duong Dinh","doi":"10.1142/S0219891621500016","DOIUrl":null,"url":null,"abstract":"We consider a class of [Formula: see text]-supercritical inhomogeneous nonlinear Schrödinger equations in two dimensions [Formula: see text] where [Formula: see text] and [Formula: see text]. Using a new approach of Arora et al. [Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 148 (2020) 1653–1663], we show the energy scattering for the equation with radially symmetric initial data. In the focusing case, our result extends the one of Farah and Guzmán [Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.) 51 (2020) 449–512] to the whole range of [Formula: see text] where the local well-posedness is available. In the defocusing case, our result extends the one in [V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. 19(2) (2019) 411–434], where the energy scattering for non-radial initial data was established in dimensions [Formula: see text].","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891621500016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13
Abstract
We consider a class of [Formula: see text]-supercritical inhomogeneous nonlinear Schrödinger equations in two dimensions [Formula: see text] where [Formula: see text] and [Formula: see text]. Using a new approach of Arora et al. [Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 148 (2020) 1653–1663], we show the energy scattering for the equation with radially symmetric initial data. In the focusing case, our result extends the one of Farah and Guzmán [Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.) 51 (2020) 449–512] to the whole range of [Formula: see text] where the local well-posedness is available. In the defocusing case, our result extends the one in [V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. 19(2) (2019) 411–434], where the energy scattering for non-radial initial data was established in dimensions [Formula: see text].
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.