A. A. Ghorbanpour Khamseh, Younes Amini, Mohammad Mahdi Shademan, V. Ghazanfari
{"title":"Intensification of thorium biosorption onto protonated orange peel using the response surface methodology","authors":"A. A. Ghorbanpour Khamseh, Younes Amini, Mohammad Mahdi Shademan, V. Ghazanfari","doi":"10.1515/cppm-2022-0085","DOIUrl":null,"url":null,"abstract":"Abstract In this research work, intensifying the possibility of protonated orange peel to uptake thorium (IV) ions from aqueous solutions in a batch system was investigated and optimized using the response surface methodology. The effect of three independent process variables including thorium initial concentration, pH, and biosorbent dosage was assessed based on the central composite design. The validity of the quadratic model was verified by the coefficient of determination. The optimization results showed that the rate of thorium (IV) uptake under optimal conditions is 183.95 mg/g. The modeling results showed that the experimental data of thorium biosorption kinetics are fitted well by the pseudo-second-order model. According to the results, the biosorption process reached equilibrium after around 4 h of contact. The Langmuir isotherm describes the experimental biosorption equilibrium data well. The maximum absorption capacity of protonated orange peel for thorium adsorption was estimated by the Langmuir isotherm at 236.97 mg/g. Thermodynamic studies show that thorium adsorption on protonated orange peel is thermodynamically feasible, spontaneous, and endothermic.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract In this research work, intensifying the possibility of protonated orange peel to uptake thorium (IV) ions from aqueous solutions in a batch system was investigated and optimized using the response surface methodology. The effect of three independent process variables including thorium initial concentration, pH, and biosorbent dosage was assessed based on the central composite design. The validity of the quadratic model was verified by the coefficient of determination. The optimization results showed that the rate of thorium (IV) uptake under optimal conditions is 183.95 mg/g. The modeling results showed that the experimental data of thorium biosorption kinetics are fitted well by the pseudo-second-order model. According to the results, the biosorption process reached equilibrium after around 4 h of contact. The Langmuir isotherm describes the experimental biosorption equilibrium data well. The maximum absorption capacity of protonated orange peel for thorium adsorption was estimated by the Langmuir isotherm at 236.97 mg/g. Thermodynamic studies show that thorium adsorption on protonated orange peel is thermodynamically feasible, spontaneous, and endothermic.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.