Detection of Atrial Fibrillation in Compressively Sensed Electrocardiogram for Remote Monitoring

IF 1.9 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohamed Abdelazez, S. Rajan, A. Chan
{"title":"Detection of Atrial Fibrillation in Compressively Sensed Electrocardiogram for Remote Monitoring","authors":"Mohamed Abdelazez, S. Rajan, A. Chan","doi":"10.3389/felec.2022.906689","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to develop an optimized system to detect Atrial Fibrillation (AF) in compressively sensed electrocardiogram (ECG) for long-term remote patient monitoring. A three-stage system was developed to 1) reject ECG of poor signal quality, 2) detect AF in compressively sensed ECG, and 3) detect AF in selectively reconstructed ECG. The Long-Term AF Database (LTAFDB), sampled at 128 Hz using a 12-bit ADC with a range of 20 mV, was used to validate the system. The LTAFDB had 83,315 normal and 82,435 AF rhythm 30 s ECG segments. Clean ECG from the LTAFDB was artificially contaminated with motion artifact to achieve −12 to 12 dB Signal-to-Noise Ratio (SNR) in steps of 3 dB. The contaminated ECG was compressively sensed at 50% and 75% compression ratio (CR). The system was evaluated using average precision (AP), the area under the curve (AUC) of the receiver operator characteristic curve, and the F1 score. The system was optimized to maximize the AP and minimize ECG rejection and reconstruction ratios. The optimized system for 50% CR had 0.72 AP, 0.63 AUC, and 0.58 F1 score, 0.38 rejection ratio, and 0.38 reconstruction ratio. The optimized system for 75% CR had 0.72 AP, 0.63 AUC, and 0.59 F1 score, 0.40 rejection ratio, and 0.35 reconstruction ratio. Challenges for long-term AF monitoring are the short battery life of monitors and the high false alarm rate due to artifacts. The proposed system improves the short battery life through compressive sensing while reducing false alarms (high AP) and ECG reconstruction (low reconstruction ratio).","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2022.906689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to develop an optimized system to detect Atrial Fibrillation (AF) in compressively sensed electrocardiogram (ECG) for long-term remote patient monitoring. A three-stage system was developed to 1) reject ECG of poor signal quality, 2) detect AF in compressively sensed ECG, and 3) detect AF in selectively reconstructed ECG. The Long-Term AF Database (LTAFDB), sampled at 128 Hz using a 12-bit ADC with a range of 20 mV, was used to validate the system. The LTAFDB had 83,315 normal and 82,435 AF rhythm 30 s ECG segments. Clean ECG from the LTAFDB was artificially contaminated with motion artifact to achieve −12 to 12 dB Signal-to-Noise Ratio (SNR) in steps of 3 dB. The contaminated ECG was compressively sensed at 50% and 75% compression ratio (CR). The system was evaluated using average precision (AP), the area under the curve (AUC) of the receiver operator characteristic curve, and the F1 score. The system was optimized to maximize the AP and minimize ECG rejection and reconstruction ratios. The optimized system for 50% CR had 0.72 AP, 0.63 AUC, and 0.58 F1 score, 0.38 rejection ratio, and 0.38 reconstruction ratio. The optimized system for 75% CR had 0.72 AP, 0.63 AUC, and 0.59 F1 score, 0.40 rejection ratio, and 0.35 reconstruction ratio. Challenges for long-term AF monitoring are the short battery life of monitors and the high false alarm rate due to artifacts. The proposed system improves the short battery life through compressive sensing while reducing false alarms (high AP) and ECG reconstruction (low reconstruction ratio).
远程监测压感心电图心房颤动的检测
本文的目的是开发一种优化的系统来检测压缩感应心电图(ECG)中的心房颤动(AF),用于长期远程患者监测。开发了一个三阶段系统,以1)拒绝信号质量差的ECG,2)在压缩感测ECG中检测AF,以及3)在选择性重建ECG中检测心房颤动。使用范围为20mV的12位ADC在128 Hz下采样的长期AF数据库(LTAFDB)用于验证系统。LTAFDB有83315个正常和82435个AF节律的30s心电图段。LTAFDB的干净心电图被人为地用运动伪影污染,以达到−12至12 dB的信噪比(SNR),步长为3 dB。在50%和75%的压缩比(CR)下对受污染的ECG进行压缩感测。使用平均精度(AP)、受试者-操作者特征曲线的曲线下面积(AUC)和F1评分来评估该系统。对该系统进行了优化,以最大限度地提高AP,并最大限度地降低ECG排斥反应和重建率。50%CR的优化系统具有0.72 AP、0.63 AUC和0.58 F1评分、0.38排异率和0.38重建率。75%CR的优化系统的AP为0.72,AUC为0.63,F1评分为0.59,排异率为0.40,重建率为0.35。长期AF监测面临的挑战是监测器的电池寿命短,以及人为因素导致的高误报率。所提出的系统通过压缩传感提高了短电池寿命,同时减少了误报(高AP)和心电图重建(低重建率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信