Applications of Campanato spaces with variable growth condition to the Navier-Stokes equation

IF 0.6 4区 数学 Q3 MATHEMATICS
E. Nakai, Tsuyoshi Yoneda
{"title":"Applications of Campanato spaces with variable growth condition to the Navier-Stokes equation","authors":"E. Nakai, Tsuyoshi Yoneda","doi":"10.14492/hokmj/1550480646","DOIUrl":null,"url":null,"abstract":"We give new viewpoints of Campanato spaces with variable growth condition for applications to the Navier-Stokes equation. Namely, we formulate a blowup criteria along maximum points of the 3D-Navier-Stokes flow in terms of stationary Euler flows and show that the properties of Campanato spaces with variable growth condition are very useful for this formulation, since variable growth condition can control the continuity and integrability of functions on the neighborhood at each point. Our criterion is different from the Beale-Kato-Majda type and Constantin-Fefferman type criterion. If geometric behavior of the velocity vector field near the maximum point has a kind of stationary Euler flow configuration up to a possible blowup time, then the solution can be extended to be the strong solution beyond the possible blowup time. As another application we also mention the Cauchy problem for the NavierStokes equation.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14492/hokmj/1550480646","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/1550480646","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We give new viewpoints of Campanato spaces with variable growth condition for applications to the Navier-Stokes equation. Namely, we formulate a blowup criteria along maximum points of the 3D-Navier-Stokes flow in terms of stationary Euler flows and show that the properties of Campanato spaces with variable growth condition are very useful for this formulation, since variable growth condition can control the continuity and integrability of functions on the neighborhood at each point. Our criterion is different from the Beale-Kato-Majda type and Constantin-Fefferman type criterion. If geometric behavior of the velocity vector field near the maximum point has a kind of stationary Euler flow configuration up to a possible blowup time, then the solution can be extended to be the strong solution beyond the possible blowup time. As another application we also mention the Cauchy problem for the NavierStokes equation.
变生长条件Campanato空间在Navier-Stokes方程中的应用
我们给出了具有变增长条件的Campanato空间在Navier-Stokes方程中的应用的新观点。也就是说,我们用稳定Euler流的形式,沿着三维Navier-Stokes流的最大点建立了一个Blow-up准则,并证明了具有可变增长条件的Campanato空间的性质对于这个公式是非常有用的,因为可变增长条件可以控制每个点邻域上函数的连续性和可积性。我们的判据不同于Beale-Cato-Majda型和Constantin-Fefferman型判据。如果在最大点附近的速度矢量场的几何行为在可能的爆发时间之前具有一种稳定的欧拉流配置,则该解可以扩展为可能爆发时间之外的强解。作为另一个应用,我们还提到了Navier-Stokes方程的Cauchy问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信