On solutions of three-dimensional system of difference equations with constant coefficients

IF 0.7 Q2 MATHEMATICS
Merve Kara, Ömer Aktaş
{"title":"On solutions of three-dimensional system of difference equations with constant coefficients","authors":"Merve Kara, Ömer Aktaş","doi":"10.31801/cfsuasmas.1163955","DOIUrl":null,"url":null,"abstract":"In this study, we show that the system of difference equations \n\\begin{align}\nx_{n}=\\frac{x_{n-2}y_{n-3}}{y_{n-1}\\left(a+bx_{n-2}y_{n-3} \\right) }, \\nonumber \\\\ \ny_{n}=\\frac{y_{n-2}z_{n-3}}{z_{n-1}\\left(c+dy_{n-2}z_{n-3} \\right) },~n\\in\\mathbb{N}_{0}, ~ \\nonumber \\\\ \nz_{n}=\\frac{z_{n-2}x_{n-3}}{x_{n-1}\\left(e+fz_{n-2}x_{n-3} \\right) }, \\nonumber \\\\\n\\end{align}\nwhere the initial values $x_{-i}, y_{-i}, z_{-i}$, $i=\\overline{1,3}$ and the parameters $a$, $b$, $c$, $d$, $e$, $f$ are non-zero real numbers, can be solved in closed form. Moreover, we obtain the solutions of above system in explicit form according to the parameters $a$, $c$ and $e$ are equal $1$ or not equal $1$. In addition, we get periodic solutions of aforementioned system. Finally, we define the forbidden set of the initial conditions by using the acquired formulas.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1163955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we show that the system of difference equations \begin{align} x_{n}=\frac{x_{n-2}y_{n-3}}{y_{n-1}\left(a+bx_{n-2}y_{n-3} \right) }, \nonumber \\ y_{n}=\frac{y_{n-2}z_{n-3}}{z_{n-1}\left(c+dy_{n-2}z_{n-3} \right) },~n\in\mathbb{N}_{0}, ~ \nonumber \\ z_{n}=\frac{z_{n-2}x_{n-3}}{x_{n-1}\left(e+fz_{n-2}x_{n-3} \right) }, \nonumber \\ \end{align} where the initial values $x_{-i}, y_{-i}, z_{-i}$, $i=\overline{1,3}$ and the parameters $a$, $b$, $c$, $d$, $e$, $f$ are non-zero real numbers, can be solved in closed form. Moreover, we obtain the solutions of above system in explicit form according to the parameters $a$, $c$ and $e$ are equal $1$ or not equal $1$. In addition, we get periodic solutions of aforementioned system. Finally, we define the forbidden set of the initial conditions by using the acquired formulas.
三维常系数差分方程组的解
在这项研究中,我们证明了差分方程组{align}x_{n} =\压裂_{n-2}y_{n-3}}{y_{n-1}\left(a+bx_{n-2}y_{n-3}\ right)},\ nonmember\\y_{n}=\ frac{y_{n-2}z_{n-3}}{z_{n-1}\left(c+dy_{n-2}z_{n-3}\right)},~n\in\mathbb{N}_{0},~\unonmember\\z_{n}=\frac{z_{n-2}x_{n-3}}{x_{n-1}\left(e+fz_{n-2}x_{n-3}\右)},\非成员\\\\end{align}where初始值$x_{-i},y_{-i}、z_{-i}$、$i=\overline{1,3}$和参数$a$、$b$、$c$、$d$、$e$、$f$都是非零实数,可以用闭形式求解。此外,根据参数$a$c和$e$等于$1$或不等于$1$,我们得到了上述系统的显式解。此外,我们还得到了上述系统的周期解。最后,利用得到的公式定义了初始条件的禁忌集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信