{"title":"Random walks with drift inside a pyramid: convergence rate for the survival probability","authors":"Rodolphe Garbit, K. Raschel","doi":"10.30757/alea.v20-35","DOIUrl":null,"url":null,"abstract":"We consider multidimensional random walks in pyramids, which by definition are cones formed by finite intersections of half-spaces. The main object of interest is the survival probability $\\mathbb{P}(\\tau>n)$, $\\tau$ denoting the first exit time from a fixed pyramid. When the drift belongs to the interior of the cone, the survival probability sequence converges to the non-exit probability $\\mathbb{P}(\\tau=\\infty)$, which is positive. In this note, we quantify the speed of convergence, and prove that the exponential rate of convergence may be computed by means of a certain min-max of the Laplace transform of the random walk increments. We illustrate our results with various examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider multidimensional random walks in pyramids, which by definition are cones formed by finite intersections of half-spaces. The main object of interest is the survival probability $\mathbb{P}(\tau>n)$, $\tau$ denoting the first exit time from a fixed pyramid. When the drift belongs to the interior of the cone, the survival probability sequence converges to the non-exit probability $\mathbb{P}(\tau=\infty)$, which is positive. In this note, we quantify the speed of convergence, and prove that the exponential rate of convergence may be computed by means of a certain min-max of the Laplace transform of the random walk increments. We illustrate our results with various examples.