The formation of self-assembled structures of C60 in solution and in the volume of an evaporating drop of a colloidal solution

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
U. Makhmanov, A. Kokhkharov, S. Bakhramov, D. Erts
{"title":"The formation of self-assembled structures of C60 in solution and in the volume of an evaporating drop of a colloidal solution","authors":"U. Makhmanov, A. Kokhkharov, S. Bakhramov, D. Erts","doi":"10.3952/physics.v60i3.4306","DOIUrl":null,"url":null,"abstract":"The results of experiments on the self-aggregation of C60 fullerene molecules both inside a two-component solvent (xylene/tetrahydrofuran) and in the volume of an evaporating drop of C60 colloidal solution on a flat substrate surface are presented. The investigations of C60 solutions using dynamic light scattering, transmission electron microscopy and UV–Vis absorption spectroscopy methods revealed the possibility of synthesis of fractal nanoaggregates with a diameter of up to ~135 nm at low concentrations of C60 in the solutions. The final geometric dimensions of C60 nanoaggregates were determined by the initial concentration of fullerene in the solvent medium. Using the scanning electron microscopy method, we have shown that in an open dissipative system – in the volume of an evaporating droplet of the colloidal solution of fullerene C60 sessile on the surface of a flat glass substrate, large quasispherical nanoaggregates with an average diameter of ~380–800 nm are formed. The physical features and regularities that characterize the processes of self-aggregation of fullerene particles in the volume of a drying drop were determined.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v60i3.4306","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

The results of experiments on the self-aggregation of C60 fullerene molecules both inside a two-component solvent (xylene/tetrahydrofuran) and in the volume of an evaporating drop of C60 colloidal solution on a flat substrate surface are presented. The investigations of C60 solutions using dynamic light scattering, transmission electron microscopy and UV–Vis absorption spectroscopy methods revealed the possibility of synthesis of fractal nanoaggregates with a diameter of up to ~135 nm at low concentrations of C60 in the solutions. The final geometric dimensions of C60 nanoaggregates were determined by the initial concentration of fullerene in the solvent medium. Using the scanning electron microscopy method, we have shown that in an open dissipative system – in the volume of an evaporating droplet of the colloidal solution of fullerene C60 sessile on the surface of a flat glass substrate, large quasispherical nanoaggregates with an average diameter of ~380–800 nm are formed. The physical features and regularities that characterize the processes of self-aggregation of fullerene particles in the volume of a drying drop were determined.
在溶液中和在胶体溶液的蒸发滴的体积中形成C60的自组装结构
给出了C60富勒烯分子在双组分溶剂(二甲苯/四氢呋喃)中以及在平坦基底表面上的C60胶体溶液蒸发液滴体积中的自聚集实验结果。使用动态光散射、透射电子显微镜和紫外-可见吸收光谱方法对C60溶液进行的研究揭示了在溶液中低浓度C60的情况下合成直径高达~135nm的分形纳米聚集体的可能性。C60纳米聚集体的最终几何尺寸由富勒烯在溶剂介质中的初始浓度确定。使用扫描电子显微镜方法,我们已经表明,在一个开放的耗散系统中——在平板玻璃基底表面富勒烯C60固着胶体溶液的蒸发液滴体积中,形成了平均直径约为380–800 nm的大的准球形纳米聚集体。确定了富勒烯颗粒在干燥液滴体积内自聚集过程的物理特征和规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lithuanian Journal of Physics
Lithuanian Journal of Physics 物理-物理:综合
CiteScore
0.90
自引率
16.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信