{"title":"Impact of lime application on erosive strength and bulk density of aggregates","authors":"Tina Frank, I. Zimmermann, R. Horn","doi":"10.31545/intagr/143766","DOIUrl":null,"url":null,"abstract":"*Corresponding author e-mail: t.frank@soils.uni-kiel.de **This work was carried out in cooperation with TU Berlin and financially supported by the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt DBU) (project no 33068/01 and 33068/02 – 2017-2021). A b s t r a c t. An area with well-aggregated and structured soil with a high inter-aggregate strength is favourable for use as arable land, both to withstand mechanical stresses and for optimal plant growth. The application of lime in the form of CaCO3 can facilitate the formation of a stable soil structure. Therefore, we determined the impact of lime application on the erosive strength and density of air-dry aggregates sampled from a Haplic Gleysol with a clay content of 45%. The lime was applied to the soil in the field at two different rates, resulting in the following: 36 dt CaO-equivalents ha and 54 dt CaO-equivalents ha. The results show that liming significantly increased the erosive strength of aggregates. Lower densities were observed which presumably leads to an improved accessibility of the pores and the particle surfaces within the aggregates due to the application of CaCO3. Furthermore, differences between amounts of C and N were determined in the aggregate layers between the limed plots and the control plots. K e y w o r d s: erosive strength, arable land, liming, conventional tillage","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/143766","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
*Corresponding author e-mail: t.frank@soils.uni-kiel.de **This work was carried out in cooperation with TU Berlin and financially supported by the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt DBU) (project no 33068/01 and 33068/02 – 2017-2021). A b s t r a c t. An area with well-aggregated and structured soil with a high inter-aggregate strength is favourable for use as arable land, both to withstand mechanical stresses and for optimal plant growth. The application of lime in the form of CaCO3 can facilitate the formation of a stable soil structure. Therefore, we determined the impact of lime application on the erosive strength and density of air-dry aggregates sampled from a Haplic Gleysol with a clay content of 45%. The lime was applied to the soil in the field at two different rates, resulting in the following: 36 dt CaO-equivalents ha and 54 dt CaO-equivalents ha. The results show that liming significantly increased the erosive strength of aggregates. Lower densities were observed which presumably leads to an improved accessibility of the pores and the particle surfaces within the aggregates due to the application of CaCO3. Furthermore, differences between amounts of C and N were determined in the aggregate layers between the limed plots and the control plots. K e y w o r d s: erosive strength, arable land, liming, conventional tillage
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.