Interior estimates for the Monge–Ampère type fourth order equations

IF 1.3 2区 数学 Q1 MATHEMATICS
Ling-Jun Wang, Bing Zhou
{"title":"Interior estimates for the Monge–Ampère type fourth order equations","authors":"Ling-Jun Wang, Bing Zhou","doi":"10.4171/RMI/1361","DOIUrl":null,"url":null,"abstract":". In this paper, we give several new approaches to study the interior estimates for a class of fourth order equations of Monge-Amp`ere type. First, we prove the interior estimates for the homogeneous equation in dimension two by using the partial Legendre transform. As an application, we obtain a new proof of the Bernstein theorem without using Caffarelli-Guti´errez’s estimate, including the Chern conjecture on the affine maximal surfaces. For the inhomogeneous equation, we also obtain a new proof in dimension two by an integral method relying on the Monge-Amp`ere Sobolev inequality. This proof works even when the right hand side is singular. In higher dimensions, we obtain the interior regularity in terms of the integral bounds on the second derivatives and the inverse of the determinant.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RMI/1361","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we give several new approaches to study the interior estimates for a class of fourth order equations of Monge-Amp`ere type. First, we prove the interior estimates for the homogeneous equation in dimension two by using the partial Legendre transform. As an application, we obtain a new proof of the Bernstein theorem without using Caffarelli-Guti´errez’s estimate, including the Chern conjecture on the affine maximal surfaces. For the inhomogeneous equation, we also obtain a new proof in dimension two by an integral method relying on the Monge-Amp`ere Sobolev inequality. This proof works even when the right hand side is singular. In higher dimensions, we obtain the interior regularity in terms of the integral bounds on the second derivatives and the inverse of the determinant.
monge - ampantere型四阶方程的内部估计
本文给出了研究一类Monge-Amp`ere型四阶方程内部估计的几种新方法。首先,我们用偏勒让德变换证明了二维齐次方程的内部估计。作为一个应用,我们在不使用Ca ffe arelli Guti´errez估计的情况下获得了Bernstein定理的新证明,包括关于a ffe ne极大曲面的Chern猜想。对于非齐次方程,我们还利用Monge-Amp`ere-Sobolev不等式,用积分方法在二维上得到了一个新的证明。即使右手边是单数,这个证明也有效。在高维中,我们得到了行列式的二阶导数和逆的积分界的内部正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信