Honokiol Provides Cardioprotection from Myocardial Ischemia/Reperfusion Injury (MI/RI) by Inhibiting Mitochondrial Apoptosis via the PI3K/AKT Signaling Pathway

IF 3.4 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Linhua Lv, Qiuhuan Kong, Zhiying Li, Ying Zhang, Bijiao Chen, L. Lv, Yubi Zhang
{"title":"Honokiol Provides Cardioprotection from Myocardial Ischemia/Reperfusion Injury (MI/RI) by Inhibiting Mitochondrial Apoptosis via the PI3K/AKT Signaling Pathway","authors":"Linhua Lv, Qiuhuan Kong, Zhiying Li, Ying Zhang, Bijiao Chen, L. Lv, Yubi Zhang","doi":"10.1155/2022/1001692","DOIUrl":null,"url":null,"abstract":"Background Myocardial injury refers to a major complication that occurs in myocardial ischemia/reperfusion injury (MI/RI). Honokiol is a well-recognized active compound extracted from the traditional Chinese herb known as Magnolia officinalis and is utilized in treating different vascular diseases. This research is aimed at examining whether Honokiol might alleviate myocardial injury in an MI/RI model. Methods Seventy-eight male C57BL/6 mice were categorized randomly into three cohorts including the Sham operation (Sham) cohort, the MI/RI cohort (Con), and the Honokiol cohort (n = 26 for each cohort). The mice in the Honokiol cohort were treated with Honokiol before MI/RI surgery (0.2 mg/kg/day for 14 days, intraperitoneal), while the mice in the Con cohort were given an intraperitoneal injection with an equivalent volume of vehicle (DMSO) daily in 14 days prior to exposure to MI/RI. After the surgery, creatine kinase- (CK-) MB and cardiac troponin T (cTnT) levels, as well as the infarct area, were measured to assess the degree of myocardial damage. Apoptotic levels were detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Electron microscopy was utilized to identify mitochondrial damage. Lastly, the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cleaved caspase-9, cytochrome C (Cyt-C), B cell lymphoma/leukemia-2 (Bcl-2), B cell lymphoma/leukemia-2 associated X (Bax), AKT, p-AKT, PI3K, and p-PI3K were analyzed utilizing western blotting. Results Honokiol can reduce the MI/RI-induced cTnT and CK-MB levels, apoptosis index, and mitochondrial swelling in cardiomyocytes via activating the PI3K/AKT signaling pathway. Conclusion Honokiol provides cardiac protection from MI/RI by suppressing mitochondrial apoptosis through the PI3K/AKT signaling pathway.","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/1001692","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Background Myocardial injury refers to a major complication that occurs in myocardial ischemia/reperfusion injury (MI/RI). Honokiol is a well-recognized active compound extracted from the traditional Chinese herb known as Magnolia officinalis and is utilized in treating different vascular diseases. This research is aimed at examining whether Honokiol might alleviate myocardial injury in an MI/RI model. Methods Seventy-eight male C57BL/6 mice were categorized randomly into three cohorts including the Sham operation (Sham) cohort, the MI/RI cohort (Con), and the Honokiol cohort (n = 26 for each cohort). The mice in the Honokiol cohort were treated with Honokiol before MI/RI surgery (0.2 mg/kg/day for 14 days, intraperitoneal), while the mice in the Con cohort were given an intraperitoneal injection with an equivalent volume of vehicle (DMSO) daily in 14 days prior to exposure to MI/RI. After the surgery, creatine kinase- (CK-) MB and cardiac troponin T (cTnT) levels, as well as the infarct area, were measured to assess the degree of myocardial damage. Apoptotic levels were detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Electron microscopy was utilized to identify mitochondrial damage. Lastly, the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cleaved caspase-9, cytochrome C (Cyt-C), B cell lymphoma/leukemia-2 (Bcl-2), B cell lymphoma/leukemia-2 associated X (Bax), AKT, p-AKT, PI3K, and p-PI3K were analyzed utilizing western blotting. Results Honokiol can reduce the MI/RI-induced cTnT and CK-MB levels, apoptosis index, and mitochondrial swelling in cardiomyocytes via activating the PI3K/AKT signaling pathway. Conclusion Honokiol provides cardiac protection from MI/RI by suppressing mitochondrial apoptosis through the PI3K/AKT signaling pathway.
厚朴酚通过PI3K/AKT信号通路抑制线粒体凋亡,对心肌缺血/再灌注损伤(MI/RI)提供心脏保护
背景心肌损伤是心肌缺血/再灌注损伤(MI/RI)的主要并发症。厚朴酚是从传统中草药厚朴中提取的一种公认的活性化合物,用于治疗不同的血管疾病。本研究旨在探讨本木酚是否可以减轻心肌梗死/心肌缺血再灌注模型的心肌损伤。方法雄性C57BL/6小鼠78只,随机分为假手术组(Sham)、MI/RI组(Con)和Honokiol组(每组26只)。Honokiol组小鼠在MI/RI手术前接受Honokiol治疗(0.2 mg/kg/天,连续14天,腹腔注射),而Con组小鼠在MI/RI暴露前14天每天腹腔注射等量的载体(DMSO)。术后测定肌酸激酶- (CK-) MB、心肌肌钙蛋白T (cTnT)水平及梗死面积,评估心肌损伤程度。采用末端脱氧核苷酸转移酶dUTP镍端标记(TUNEL)染色检测细胞凋亡水平。电镜观察线粒体损伤。最后,利用western blotting分析甘油醛-3-磷酸脱氢酶(GAPDH)、cleaved caspase-9、细胞色素C (Cyt-C)、B细胞淋巴瘤/白血病-2 (Bcl-2)、B细胞淋巴瘤/白血病-2相关X (Bax)、AKT、p-AKT、PI3K和p-PI3K的表达水平。结果厚木酚可通过激活PI3K/AKT信号通路,降低心肌细胞cTnT和CK-MB水平、细胞凋亡指数和线粒体肿胀。结论厚朴酚通过PI3K/AKT信号通路抑制线粒体凋亡,对心肌梗死/心肌梗死具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Therapeutics
Cardiovascular Therapeutics 医学-心血管系统
CiteScore
5.60
自引率
0.00%
发文量
55
审稿时长
6 months
期刊介绍: Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged. Subject areas include (but are by no means limited to): Acute coronary syndrome Arrhythmias Atherosclerosis Basic cardiac electrophysiology Cardiac catheterization Cardiac remodeling Coagulation and thrombosis Diabetic cardiovascular disease Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF) Hyperlipidemia Hypertension Ischemic heart disease Vascular biology Ventricular assist devices Molecular cardio-biology Myocardial regeneration Lipoprotein metabolism Radial artery access Percutaneous coronary intervention Transcatheter aortic and mitral valve replacement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信