M. Lecourt, G. Chietera, F. Jullien, B. Blerot, S. Antoniotti
{"title":"From biosynthesis in plants to post-biosynthetic enzymatic conversion. Generation of odor-impact rose oxides from citronellol-rich essential oils","authors":"M. Lecourt, G. Chietera, F. Jullien, B. Blerot, S. Antoniotti","doi":"10.1080/23818107.2022.2100476","DOIUrl":null,"url":null,"abstract":"ABSTRACT Citronellol is a monoterpene alcohol biosynthesized by various plant species belonging to different families of Angiosperm. Bioinspired by the metabolism of Rosa sp., able to produce (–)-cis-rose oxide from citronellol, we have studied and optimized a laccase-catalyzed oxidation of (±)-, (R)-, and (S)-citronellol into rose oxide diastereomers in the presence of mediators. The reaction was found to be diastereomerically cis-selective but completely non-enantioselective. The laccase-mediator system was then applied on citronellol-containing essential oils such as lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) essential oils in order to modify their composition beyond the plant metabolism and increase their rose oxides content, thereby tuning their olfactory properties.","PeriodicalId":54302,"journal":{"name":"Botany Letters","volume":"170 1","pages":"15 - 27"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botany Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23818107.2022.2100476","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Citronellol is a monoterpene alcohol biosynthesized by various plant species belonging to different families of Angiosperm. Bioinspired by the metabolism of Rosa sp., able to produce (–)-cis-rose oxide from citronellol, we have studied and optimized a laccase-catalyzed oxidation of (±)-, (R)-, and (S)-citronellol into rose oxide diastereomers in the presence of mediators. The reaction was found to be diastereomerically cis-selective but completely non-enantioselective. The laccase-mediator system was then applied on citronellol-containing essential oils such as lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) essential oils in order to modify their composition beyond the plant metabolism and increase their rose oxides content, thereby tuning their olfactory properties.
Botany LettersAgricultural and Biological Sciences-Plant Science
CiteScore
3.10
自引率
6.70%
发文量
54
期刊介绍:
Botany Letters is an international scientific journal, published by the French Botanical Society (Société botanique de France) in partnership with Taylor & Francis. Botany Letters replaces Acta Botanica Gallica, which was created in 1993, building on over a century of renowned publications by the Société botanique de France.