A Non-Flat Riemannian Manifold Admitting Certain Vectors Fields

IF 0.4 Q4 MATHEMATICS
S. Dey, B. Pal, A. Bhattacharyya
{"title":"A Non-Flat Riemannian Manifold Admitting Certain Vectors Fields","authors":"S. Dey, B. Pal, A. Bhattacharyya","doi":"10.1080/1726037X.2019.1668148","DOIUrl":null,"url":null,"abstract":"Abstract It is well-known that Einstein manifolds play an important role in geometry as well as in general relativity. Einstein manifolds form a natural subclass of the class of quasi-Einstein manifolds. The object of the present paper is to study some geometric properties of mixed-generalized quasi-Einstein Manifolds (MG(QE)n) which admitting certain vector fields. We show the existence of MG(QE)n, by constructing several non-trivial examples. Finally we study warped product on MG(QE)n and show that M = I×M∗ (dimI = 1 and dimM∗ = n − 1) is a MG(QE)n if M∗ is a generalized quasi-Einstein Manifold (G(QE)n).","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"17 1","pages":"221 - 237"},"PeriodicalIF":0.4000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2019.1668148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2019.1668148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is well-known that Einstein manifolds play an important role in geometry as well as in general relativity. Einstein manifolds form a natural subclass of the class of quasi-Einstein manifolds. The object of the present paper is to study some geometric properties of mixed-generalized quasi-Einstein Manifolds (MG(QE)n) which admitting certain vector fields. We show the existence of MG(QE)n, by constructing several non-trivial examples. Finally we study warped product on MG(QE)n and show that M = I×M∗ (dimI = 1 and dimM∗ = n − 1) is a MG(QE)n if M∗ is a generalized quasi-Einstein Manifold (G(QE)n).
允许某些向量场的非平坦黎曼流形
摘要众所周知,爱因斯坦流形在几何和广义相对论中都发挥着重要作用。爱因斯坦流形形成了类拟爱因斯坦流形的一个自然子类。本文的目的是研究包含某些向量场的混合广义拟爱因斯坦流形(MG(QE)n)的一些几何性质。通过构造几个非平凡的例子,我们证明了MG(QE)n的存在性。最后,我们研究了MG(QE)n上的翘曲积,并证明了如果M*是广义拟爱因斯坦流形(G(QE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信