Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion

IF 2.1 2区 数学 Q1 MATHEMATICS
S. Kawashima, Y. Shibata, Jiang Xu
{"title":"Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion","authors":"S. Kawashima, Y. Shibata, Jiang Xu","doi":"10.1080/03605302.2021.1983596","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we are concerned with generally symmetric hyperbolic-parabolic systems with Korteweg-type dispersion. Referring to those classical efforts by Kawashima et al., we formulate new structural conditions for the Korteweg-type dispersion and develop the dissipative mechanism of “regularity-gain type.” As an application, it is checked that several concrete model systems (e.g., the compressible Navier-Stokes(-Fourier)-Korteweg system) satisfy the general structural conditions. In addition, the optimality of our general theory on the dissipative structure is also verified by calculating the asymptotic expansions of eigenvalues.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"378 - 400"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2021.1983596","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract In this paper, we are concerned with generally symmetric hyperbolic-parabolic systems with Korteweg-type dispersion. Referring to those classical efforts by Kawashima et al., we formulate new structural conditions for the Korteweg-type dispersion and develop the dissipative mechanism of “regularity-gain type.” As an application, it is checked that several concrete model systems (e.g., the compressible Navier-Stokes(-Fourier)-Korteweg system) satisfy the general structural conditions. In addition, the optimality of our general theory on the dissipative structure is also verified by calculating the asymptotic expansions of eigenvalues.
具有Korteweg型色散的对称双曲-抛物型系统的耗散结构
摘要本文研究具有korteweg型色散的一般对称双曲抛物型系统。参考Kawashima等人的经典努力,我们制定了korteweg型色散的新结构条件,并发展了“规则-增益型”耗散机制。作为一个应用,检查了几个具体的模型系统(如可压缩的Navier-Stokes(-Fourier)-Korteweg系统)满足一般结构条件。此外,通过计算本征值的渐近展开式也验证了我们关于耗散结构的一般理论的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信