Automated optical image analysis of goethitic iron ores

IF 0.9 Q3 MINING & MINERAL PROCESSING
E. Donskoi, J. Manuel, S. Hapugoda, A. Poliakov, T. D. Raynlyn, P. Austin, M. Peterson
{"title":"Automated optical image analysis of goethitic iron ores","authors":"E. Donskoi, J. Manuel, S. Hapugoda, A. Poliakov, T. D. Raynlyn, P. Austin, M. Peterson","doi":"10.1080/25726641.2019.1706375","DOIUrl":null,"url":null,"abstract":"ABSTRACT To optimise processing/beneficiation procedures a detailed characterisation of goethitic ores is needed, including mineral liberation, association and textural classification. The identification of different iron oxides and oxyhydroxides is already reliably performed by optical image analysis (OIA). Automated OIA identification of different gangue materials, particularly quartz, can be problematic, however. The article demonstrates the capability of OIA software Mineral4/Recognition4 to characterise goethitic iron ores. Characterisation includes identification of the different types of goethite, hydrohematite and gangue materials such as quartz and kaolinite. XRD and XRF analysis results are compared with those from OIA. Correlation of these results and visual comparison shows that optical image analysis can be an effective tool for characterisation of low and medium grade iron ores. The work highlights issues regarding discrimination of aluminous goethite and gangue, micro and nano-porosity and effective density, for further study.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"131 1","pages":"14 - 24"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726641.2019.1706375","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2019.1706375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 11

Abstract

ABSTRACT To optimise processing/beneficiation procedures a detailed characterisation of goethitic ores is needed, including mineral liberation, association and textural classification. The identification of different iron oxides and oxyhydroxides is already reliably performed by optical image analysis (OIA). Automated OIA identification of different gangue materials, particularly quartz, can be problematic, however. The article demonstrates the capability of OIA software Mineral4/Recognition4 to characterise goethitic iron ores. Characterisation includes identification of the different types of goethite, hydrohematite and gangue materials such as quartz and kaolinite. XRD and XRF analysis results are compared with those from OIA. Correlation of these results and visual comparison shows that optical image analysis can be an effective tool for characterisation of low and medium grade iron ores. The work highlights issues regarding discrimination of aluminous goethite and gangue, micro and nano-porosity and effective density, for further study.
针铁矿的自动光学图像分析
摘要:为了优化加工/选矿程序,需要对针铁矿进行详细的表征,包括矿物释放、缔合和结构分类。通过光学图像分析(OIA)已经可靠地进行了不同氧化铁和氢氧化物的鉴定。然而,不同脉石材料,特别是石英的OIA自动识别可能存在问题。本文展示了OIA软件Mineral4/Recognition4对针铁矿石进行表征的能力。表征包括鉴定不同类型的针铁矿、水赤铁矿和脉石材料,如石英和高岭石。将XRD和XRF分析结果与OIA的结果进行了比较。这些结果与视觉比较的相关性表明,光学图像分析可以成为表征中低品位铁矿石的有效工具。这项工作强调了含铝针铁矿和脉石的鉴别、微观和纳米孔隙率以及有效密度等问题,以供进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信