Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes

Pub Date : 2022-05-09 DOI:10.1007/s10463-022-00826-6
Holger Dette, Martin Kroll
{"title":"Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes","authors":"Holger Dette,&nbsp;Martin Kroll","doi":"10.1007/s10463-022-00826-6","DOIUrl":null,"url":null,"abstract":"<div><p>For the class of Gauss–Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss–Markov process can be observed. We derive sufficient conditions which imply asymptotic equivalence of the two models. We verify these conditions for the special cases of Sobolev ellipsoids and Hölder classes with smoothness index <span>\\(&gt;1/2\\)</span> under mild assumptions on the Gauss–Markov process. To give a counterexample, we show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our findings demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with i.i.d. standard normal errors (see Brown and Low (Ann Stat 24:2384–2398, 1996)) can be extended to a setup with general Gauss–Markov noises.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00826-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the class of Gauss–Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss–Markov process can be observed. We derive sufficient conditions which imply asymptotic equivalence of the two models. We verify these conditions for the special cases of Sobolev ellipsoids and Hölder classes with smoothness index \(>1/2\) under mild assumptions on the Gauss–Markov process. To give a counterexample, we show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our findings demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with i.i.d. standard normal errors (see Brown and Low (Ann Stat 24:2384–2398, 1996)) can be extended to a setup with general Gauss–Markov noises.

Abstract Image

分享
查看原文
具有相关误差的非参数回归的渐近等价性:高斯-马尔科夫过程
对于一类高斯-马尔可夫过程,研究了误差由过程增量给出的非参数回归模型与连续时间模型的渐近等价问题,其中确定性信号与高斯-马尔可夫过程的和可以观察到整条路径。给出了两个模型渐近等价的充分条件。我们在高斯-马尔可夫过程的温和假设下,对Sobolev椭球和具有平滑指数\(>1/2\)的Hölder类的特殊情况验证了这些条件。为了给出一个反例,我们证明了对于布朗桥的特殊情况渐近等价不成立。我们的研究结果表明,众所周知的高斯白噪声模型和具有i.i.d标准正态误差的非参数回归模型的渐近等价性(见Brown和Low (Ann Stat 24:2384-2398, 1996))可以扩展到具有一般高斯-马尔可夫噪声的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信