Uniformly Convergent Hybrid Numerical Method for Singularly Perturbed Delay Convection-Diffusion Problems

IF 1.4 Q2 MATHEMATICS, APPLIED
M. Woldaregay, G. Duressa
{"title":"Uniformly Convergent Hybrid Numerical Method for Singularly Perturbed Delay Convection-Diffusion Problems","authors":"M. Woldaregay, G. Duressa","doi":"10.1155/2021/6654495","DOIUrl":null,"url":null,"abstract":"This paper deals with numerical treatment of nonstationary singularly perturbed delay convection-diffusion problems. The solution of the considered problem exhibits boundary layer on the right side of the spatial domain. To approximate the term with the delay, Taylor’s series approximation is used. The resulting time-dependent singularly perturbed convection-diffusion problems are solved using Crank-Nicolson method for temporal discretization and hybrid method for spatial discretization. The hybrid method is designed using mid-point upwind in regular region with central finite difference in boundary layer region on piecewise uniform Shishkin mesh. Numerical examples are used to validate the theoretical findings and analysis of the proposed scheme. The present method gives accurate and nonoscillatory solutions in regular and boundary layer regions of the solution domain. The stability and the uniform convergence of the scheme are proved. The scheme converges uniformly with almost second-order rate of convergence.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6654495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

This paper deals with numerical treatment of nonstationary singularly perturbed delay convection-diffusion problems. The solution of the considered problem exhibits boundary layer on the right side of the spatial domain. To approximate the term with the delay, Taylor’s series approximation is used. The resulting time-dependent singularly perturbed convection-diffusion problems are solved using Crank-Nicolson method for temporal discretization and hybrid method for spatial discretization. The hybrid method is designed using mid-point upwind in regular region with central finite difference in boundary layer region on piecewise uniform Shishkin mesh. Numerical examples are used to validate the theoretical findings and analysis of the proposed scheme. The present method gives accurate and nonoscillatory solutions in regular and boundary layer regions of the solution domain. The stability and the uniform convergence of the scheme are proved. The scheme converges uniformly with almost second-order rate of convergence.
奇摄动延迟对流扩散问题的一致收敛混合数值方法
本文讨论了非平稳奇摄动延迟对流扩散问题的数值处理。所考虑问题的解在空间域的右侧显示出边界层。为了近似具有延迟的项,使用了泰勒级数近似。使用Crank-Nicolson方法进行时间离散化,并使用混合方法进行空间离散化,求解了由此产生的含时奇摄动对流扩散问题。在分段均匀Shishkin网格上,利用规则区域的中点逆风和边界层区域的中心有限差分设计了混合方法。数值算例验证了该方案的理论结果和分析结果。该方法在解域的规则层和边界层区域给出了精确的非振荡解。证明了该方案的稳定性和一致收敛性。该方案以几乎二阶的收敛速度一致收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信