Weighted Hardy-type inequalities involving convex function for fractional calculus operators

IF 0.3 Q4 MATHEMATICS
Sajid Iqbal , Josip Pečarić , Lars-Erik Persson , Zivorad Tomovski
{"title":"Weighted Hardy-type inequalities involving convex function for fractional calculus operators","authors":"Sajid Iqbal ,&nbsp;Josip Pečarić ,&nbsp;Lars-Erik Persson ,&nbsp;Zivorad Tomovski","doi":"10.1016/j.trmi.2017.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to establish some new weighted Hardy-type inequalities involving convex and monotone convex functions using Hilfer fractional derivative and fractional integral operator with generalized Mittag-Leffler function in its kernel. We also discuss one dimensional cases of our related results. As a special case of our general results we obtain the results of Iqbal et al. (2017). Moreover, the refinement of Hardy-type inequalities for Hilfer fractional derivative is also included.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 2","pages":"Pages 205-222"},"PeriodicalIF":0.3000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.12.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S234680921730106X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to establish some new weighted Hardy-type inequalities involving convex and monotone convex functions using Hilfer fractional derivative and fractional integral operator with generalized Mittag-Leffler function in its kernel. We also discuss one dimensional cases of our related results. As a special case of our general results we obtain the results of Iqbal et al. (2017). Moreover, the refinement of Hardy-type inequalities for Hilfer fractional derivative is also included.

涉及凸函数的分数阶微积分算子加权hardy型不等式
本文的目的是利用Hilfer分数阶导数和分数阶积分算子建立一些新的涉及凸函数和单调凸函数的加权hardy型不等式,其核中有广义mittagg - leffler函数。我们还讨论了相关结果的一维情况。作为我们一般结果的特例,我们获得了Iqbal等人(2017)的结果。此外,还包括对Hilfer分数阶导数的hardy型不等式的细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信