{"title":"On inverse problems for uncoupled space-time fractional operators involving time-dependent coefficients","authors":"Li Li","doi":"10.3934/ipi.2023008","DOIUrl":null,"url":null,"abstract":"We study the uncoupled space-time fractional operators involving time-dependent coefficients and formulate the corresponding inverse problems. Our goal is to determine the variable coefficients from the exterior partial measurements of the Dirichlet-to-Neumann map. We exploit the integration by parts formula for Riemann-Liouville and Caputo derivatives to derive the Runge approximation property for our space-time fractional operator based on the unique continuation property of the fractional Laplacian. This enables us to extend early unique determination results for space-fractional but time-local operators to the space-time fractional case.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2023008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
We study the uncoupled space-time fractional operators involving time-dependent coefficients and formulate the corresponding inverse problems. Our goal is to determine the variable coefficients from the exterior partial measurements of the Dirichlet-to-Neumann map. We exploit the integration by parts formula for Riemann-Liouville and Caputo derivatives to derive the Runge approximation property for our space-time fractional operator based on the unique continuation property of the fractional Laplacian. This enables us to extend early unique determination results for space-fractional but time-local operators to the space-time fractional case.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.