Experimental Investigation of Thermal and Humidity Dynamics in the Enclosures Made of Non-Permeable Walls

IF 0.6 4区 工程技术 Q4 MECHANICS
Mechanika Pub Date : 2022-12-05 DOI:10.5755/j02.mech.32240
Z. Staliulionis, G. Miliauskas, L. Paukštaitis, A. Balčius
{"title":"Experimental Investigation of Thermal and Humidity Dynamics in the Enclosures Made of Non-Permeable Walls","authors":"Z. Staliulionis, G. Miliauskas, L. Paukštaitis, A. Balčius","doi":"10.5755/j02.mech.32240","DOIUrl":null,"url":null,"abstract":"The usage of electronics in outdoor environment is growing therefore the control of moisture related failures in electronics are becoming more important. The main cause of these failures is the humidity inside electronics which may condense on the surfaces or components. To protect electronics from harsh environment, the components and electronics are encapsulated by using electronics enclosures, however it does not prevent from moisture ingress through plastic walls, gaskets, cable feedthroughs and etc. Thus, to control the humidity, it is very important to understand the humidity ingress and behaviour in the electronics enclosures. Hence, the paper concerns the study of temperature and moisture dynamics when electronics enclosure is exposed to a cyclic temperature condition according to MIL-STD-810F. Two different enclosures were selected for the experiment, namely, aluminum enclosure and glass jar. The study was carried out in a climatic chamber and the measurements of temperature and relative humidity were performed using sensors. Different effect of enclosure material was considered for humidity ingress. In aluminum enclosure, results showed that the temperature difference between different points are smaller than in case of glass jar. Different temperatures in enclosures are determined by different boundary conditions outside the enclosure caused by the climatic chamber.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.32240","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The usage of electronics in outdoor environment is growing therefore the control of moisture related failures in electronics are becoming more important. The main cause of these failures is the humidity inside electronics which may condense on the surfaces or components. To protect electronics from harsh environment, the components and electronics are encapsulated by using electronics enclosures, however it does not prevent from moisture ingress through plastic walls, gaskets, cable feedthroughs and etc. Thus, to control the humidity, it is very important to understand the humidity ingress and behaviour in the electronics enclosures. Hence, the paper concerns the study of temperature and moisture dynamics when electronics enclosure is exposed to a cyclic temperature condition according to MIL-STD-810F. Two different enclosures were selected for the experiment, namely, aluminum enclosure and glass jar. The study was carried out in a climatic chamber and the measurements of temperature and relative humidity were performed using sensors. Different effect of enclosure material was considered for humidity ingress. In aluminum enclosure, results showed that the temperature difference between different points are smaller than in case of glass jar. Different temperatures in enclosures are determined by different boundary conditions outside the enclosure caused by the climatic chamber.
非渗透墙围护结构的湿热动力学实验研究
电子设备在户外环境中的使用越来越多,因此控制电子设备中与湿气相关的故障变得越来越重要。这些故障的主要原因是电子设备内部的湿度可能会凝结在表面或部件上。为了保护电子设备免受恶劣环境的影响,使用电子设备外壳封装组件和电子设备,但不能防止湿气通过塑料壁、垫圈、电缆引线等进入。因此,为了控制湿度,了解电子设备外壳中的湿度进入和行为非常重要。因此,本文关注的是根据MIL-STD-810F对电子外壳暴露在循环温度条件下时的温度和湿度动力学的研究。实验选择了两种不同的外壳,即铝外壳和玻璃罐。这项研究是在气候室中进行的,使用传感器测量温度和相对湿度。考虑了外壳材料对湿度进入的不同影响。结果表明,在铝外壳中,不同点之间的温差小于玻璃罐的情况。外壳内的不同温度由气候室引起的外壳外的不同边界条件决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信