simpleNomo: A Python Package of Making Nomograms for Visualizable Calculation of Logistic Regression Models.

Health data science Pub Date : 2023-06-07 eCollection Date: 2023-01-01 DOI:10.34133/hds.0023
Haoyang Hong, Shenda Hong
{"title":"simpleNomo: A Python Package of Making Nomograms for Visualizable Calculation of Logistic Regression Models.","authors":"Haoyang Hong, Shenda Hong","doi":"10.34133/hds.0023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Logistic regression models are widely used in clinical prediction, but their application in resource-poor settings or areas without internet access can be challenging. Nomograms can serve as a useful visualization tool to speed up the calculation procedure, but existing nomogram generators often require the input of raw data, inhibiting the transformation of established logistic regression models that only provide coefficients. Developing a tool that can generate nomograms directly from logistic regression coefficients would greatly increase usability and facilitate the translation of research findings into patient care.</p><p><strong>Methods: </strong>We designed and developed simpleNomo, an open-source Python toolbox that enables the construction of nomograms for logistic regression models. Uniquely, simpleNomo allows for the creation of nomograms using only the coefficients of the model. Further, we also devoloped an online website for nomogram generation.</p><p><strong>Results: </strong>simpleNomo properly maintains the predictive ability of the original logistic regression model and easy to follow. simpleNomo is compatible with Python 3 and can be installed through Python Package Index (PyPI) or https://github.com/Hhy096/nomogram.</p><p><strong>Conclusion: </strong>This paper presents simpleNomo, an open-source Python toolbox for generating nomograms for logistic regression models. It facilitates the process of transferring established logistic regression models to nomograms and can further convert more existing works into practical use.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"0023"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Logistic regression models are widely used in clinical prediction, but their application in resource-poor settings or areas without internet access can be challenging. Nomograms can serve as a useful visualization tool to speed up the calculation procedure, but existing nomogram generators often require the input of raw data, inhibiting the transformation of established logistic regression models that only provide coefficients. Developing a tool that can generate nomograms directly from logistic regression coefficients would greatly increase usability and facilitate the translation of research findings into patient care.

Methods: We designed and developed simpleNomo, an open-source Python toolbox that enables the construction of nomograms for logistic regression models. Uniquely, simpleNomo allows for the creation of nomograms using only the coefficients of the model. Further, we also devoloped an online website for nomogram generation.

Results: simpleNomo properly maintains the predictive ability of the original logistic regression model and easy to follow. simpleNomo is compatible with Python 3 and can be installed through Python Package Index (PyPI) or https://github.com/Hhy096/nomogram.

Conclusion: This paper presents simpleNomo, an open-source Python toolbox for generating nomograms for logistic regression models. It facilitates the process of transferring established logistic regression models to nomograms and can further convert more existing works into practical use.

simpleNomo:为逻辑回归模型的可视化计算制作nomogram的Python包
背景:逻辑回归模型被广泛应用于临床预测,但在资源匮乏的环境或没有互联网接入的地区应用这些模型可能具有挑战性。提名图可以作为一种有用的可视化工具,加快计算过程,但现有的提名图生成器通常需要输入原始数据,从而阻碍了只提供系数的既定逻辑回归模型的转换。开发一种能直接从逻辑回归系数生成提名图的工具将大大提高可用性,并有助于将研究成果转化为患者护理:我们设计并开发了 simpleNomo,这是一个开源 Python 工具箱,可以为逻辑回归模型构建提名图。与众不同的是,simpleNomo 只需使用模型系数即可创建提名图。此外,我们还开发了一个在线网站,用于生成提名图。结果:simpleNomo 恰当地保持了原始逻辑回归模型的预测能力,而且简单易用。simpleNomo 与 Python 3 兼容,可通过 Python 软件包索引(PyPI)或 https://github.com/Hhy096/nomogram.Conclusion 安装:本文介绍了用于生成逻辑回归模型提名图的开源 Python 工具箱 simpleNomo。它有助于将已建立的逻辑回归模型转化为提名图,并能进一步将更多现有作品转化为实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信