Some Aspects on a Special Type of $(\alpha,\beta )$-metric

IF 0.4 Q4 MATHEMATICS
Laurian-loan Piscoran, C. Barbu
{"title":"Some Aspects on a Special Type of $(\\alpha,\\beta )$-metric","authors":"Laurian-loan Piscoran, C. Barbu","doi":"10.36890/iejg.1265041","DOIUrl":null,"url":null,"abstract":"The aim of this paper is twofold. Firstly, we will investigate the link between the condition for the functions $\\phi(s)$ from $(\\alpha, \\beta)$-metrics of Douglas type to be self-concordant and k-self concordant, and the other objective of the paper will be to continue to investigate the recently new introduced $(\\alpha, \\beta)$-metric ([17]):\n $$\n F(\\alpha,\\beta)=\\frac{\\beta^{2}}{\\alpha}+\\beta+a \\alpha\n $$\n where $\\alpha=\\sqrt{a_{ij}y^{i}y^{j}}$ is a Riemannian metric; $\\beta=b_{i}y^{i}$ is a 1-form, and $a\\in \\left(\\frac{1}{4},+\\infty\\right)$ is a real positive scalar. This kind of metric can be expressed as follows: $F(\\alpha,\\beta)=\\alpha\\cdot \\phi(s)$, where $\\phi(s)=s^{2}+s+a$.\n In this paper we will study some important results in respect with the above mentioned $(\\alpha, \\beta)$-metric such as: the Kropina change for this metric, the Main Scalar for this metric and also we will analyze how the condition to be self-concordant and k-self-concordant for the function $\\phi(s)$, can be linked with the condition for the metric $F$ to be of Douglas type.\n\nself-concordant functions, Kropina change, main scalar.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1265041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is twofold. Firstly, we will investigate the link between the condition for the functions $\phi(s)$ from $(\alpha, \beta)$-metrics of Douglas type to be self-concordant and k-self concordant, and the other objective of the paper will be to continue to investigate the recently new introduced $(\alpha, \beta)$-metric ([17]): $$ F(\alpha,\beta)=\frac{\beta^{2}}{\alpha}+\beta+a \alpha $$ where $\alpha=\sqrt{a_{ij}y^{i}y^{j}}$ is a Riemannian metric; $\beta=b_{i}y^{i}$ is a 1-form, and $a\in \left(\frac{1}{4},+\infty\right)$ is a real positive scalar. This kind of metric can be expressed as follows: $F(\alpha,\beta)=\alpha\cdot \phi(s)$, where $\phi(s)=s^{2}+s+a$. In this paper we will study some important results in respect with the above mentioned $(\alpha, \beta)$-metric such as: the Kropina change for this metric, the Main Scalar for this metric and also we will analyze how the condition to be self-concordant and k-self-concordant for the function $\phi(s)$, can be linked with the condition for the metric $F$ to be of Douglas type. self-concordant functions, Kropina change, main scalar.
一种特殊类型$(\alpha,\beta )$ -metric的几个方面
本文的目的是双重的。首先,我们将研究Douglas类型的$(\alpha,\beta)$-度量的函数$\phi(s)$是自调和的条件和k-自调和的之间的联系,本文的另一个目标是继续研究最近引入的$(\alpha,\peta)$-度量([17]):$$F(\alpha\beta)=\frac{\beta^{2}}{\alpha+a\alpha$$其中$\alpha=\sqrt{a_{ij}y^{i}y^{j} }$是一个黎曼度量$\β=b_{i}y^{i} $是1-形式,$a\\in\left(\frac{1}{4},+\infty\right)$是实正标量。这种度量可以表示如下:$F(\alpha,\beta)=\alpha\cdot\phi(s)$,其中$\phi(s)=s^{2}+s+a$。在本文中,我们将研究关于上述$(\alpha,\beta)$-度量的一些重要结果,例如:该度量的Kropina变化,该度量的主标量,并且我们还将分析函数$\phi(s)$的条件是如何自洽和k-自洽的,可以与度量$F$为Douglas类型的条件联系起来。自相关函数,Kropina变换,主标量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信