Jingkang Liang, Yixiao Liao, Zhuyun Chen, Huibin Lin, Gang Jin, Konstantinos Gryllias, Weihua Li
{"title":"Intelligent fault diagnosis of rotating machinery using lightweight network with modified tree-structured parzen estimators","authors":"Jingkang Liang, Yixiao Liao, Zhuyun Chen, Huibin Lin, Gang Jin, Konstantinos Gryllias, Weihua Li","doi":"10.1049/cim2.12055","DOIUrl":null,"url":null,"abstract":"<p>Deep learning-based methods have been widely used in the field of rotating machinery fault diagnosis. It is of practical significance to improve the calculation speed of the model on the premise of ensuring accuracy, so as to realise real-time fault diagnosis. However, designing an efficient and lightweight fault diagnosis network requires expert knowledge to determine the network structure and adjust the hyperparameters of the network, which is time-consuming and laborious. In order to design fault diagnosis networks considering both time and accuracy effortlessly, a novel lightweight network with modified tree-structured parzen estimators (LN-MT) is proposed for intelligent fault diagnosis of rotating machinery. Firstly, a lightweight framework based on global average pooling and group convolution is proposed, and a hyperparameter optimisation (HPO) method based on Bayesian optimisation called tree-structured parzen estimator is utilised to automatically search the optimal hyperparameters for the fault diagnosis task. The objective of the HPO algorithm is the weighting of accuracy and calculating time, so as to find models that balance both time and accuracy. The results of comparison experiments indicate that LN-MT can achieve superior fault diagnosis accuracies with few trainable parameters and less calculating time.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"4 3","pages":"194-207"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12055","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 3
Abstract
Deep learning-based methods have been widely used in the field of rotating machinery fault diagnosis. It is of practical significance to improve the calculation speed of the model on the premise of ensuring accuracy, so as to realise real-time fault diagnosis. However, designing an efficient and lightweight fault diagnosis network requires expert knowledge to determine the network structure and adjust the hyperparameters of the network, which is time-consuming and laborious. In order to design fault diagnosis networks considering both time and accuracy effortlessly, a novel lightweight network with modified tree-structured parzen estimators (LN-MT) is proposed for intelligent fault diagnosis of rotating machinery. Firstly, a lightweight framework based on global average pooling and group convolution is proposed, and a hyperparameter optimisation (HPO) method based on Bayesian optimisation called tree-structured parzen estimator is utilised to automatically search the optimal hyperparameters for the fault diagnosis task. The objective of the HPO algorithm is the weighting of accuracy and calculating time, so as to find models that balance both time and accuracy. The results of comparison experiments indicate that LN-MT can achieve superior fault diagnosis accuracies with few trainable parameters and less calculating time.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).