{"title":"Overview of LiDAR point cloud target detection methods based on deep learning","authors":"Siyuan Huang, Limin Liu, Xiongjun Fu, Jian Dong, Fuyu Huang, Ping Lang","doi":"10.1108/sr-01-2022-0022","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to summarize the existing point cloud target detection algorithms based on deep learning, and provide reference for researchers in related fields. In recent years, with its outstanding performance in target detection of 2D images, deep learning technology has been applied in light detection and ranging (LiDAR) point cloud data to improve the automation and intelligence level of target detection. However, there are still some difficulties and room for improvement in target detection from the 3D point cloud. In this paper, the vehicle LiDAR target detection method is chosen as the research subject.\n\n\nDesign/methodology/approach\nFirstly, the challenges of applying deep learning to point cloud target detection are described; secondly, solutions in relevant research are combed in response to the above challenges. The currently popular target detection methods are classified, among which some are compared with illustrate advantages and disadvantages. Moreover, approaches to improve the accuracy of network target detection are introduced.\n\n\nFindings\nFinally, this paper also summarizes the shortcomings of existing methods and signals the prospective development trend.\n\n\nOriginality/value\nThis paper introduces some existing point cloud target detection methods based on deep learning, which can be applied to a driverless, digital map, traffic monitoring and other fields, and provides a reference for researchers in related fields.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-01-2022-0022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to summarize the existing point cloud target detection algorithms based on deep learning, and provide reference for researchers in related fields. In recent years, with its outstanding performance in target detection of 2D images, deep learning technology has been applied in light detection and ranging (LiDAR) point cloud data to improve the automation and intelligence level of target detection. However, there are still some difficulties and room for improvement in target detection from the 3D point cloud. In this paper, the vehicle LiDAR target detection method is chosen as the research subject.
Design/methodology/approach
Firstly, the challenges of applying deep learning to point cloud target detection are described; secondly, solutions in relevant research are combed in response to the above challenges. The currently popular target detection methods are classified, among which some are compared with illustrate advantages and disadvantages. Moreover, approaches to improve the accuracy of network target detection are introduced.
Findings
Finally, this paper also summarizes the shortcomings of existing methods and signals the prospective development trend.
Originality/value
This paper introduces some existing point cloud target detection methods based on deep learning, which can be applied to a driverless, digital map, traffic monitoring and other fields, and provides a reference for researchers in related fields.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.