{"title":"A probabilistic proof of Cooper and Frieze's First Visit Time Lemma","authors":"F. Manzo, Matteo Quattropani, E. Scoppola","doi":"10.30757/alea.v18-64","DOIUrl":null,"url":null,"abstract":"We present an alternative proof of the so-called First Visit Time Lemma (FVTL), originally presented by Cooper and Frieze in its first formulation in Cooper and Frieze (2005), and then used and refined in a list of papers by Cooper, Frieze and coauthors. We work in the original setting, considering a growing sequence of irreducible Markov chains on n states. We assume that the chain is rapidly mixing and with a stationary measure with no entry being either too small nor too large. Under these assumptions, the FVTL shows the exponential decay of the distribution of the hitting time of a given state x—for the chain started at stationarity—up to a small multiplicative correction. While the proof by Cooper and Frieze is based on tools from complex analysis, and it requires an additional assumption on a generating function, we present a completely probabilistic proof, relying on the theory of quasi-stationary distributions and on strong-stationary times arguments. In addition, under the same set of assumptions, we provide some quantitative control on the Doob’s transform of the chain on the complement of the state x.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v18-64","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9
Abstract
We present an alternative proof of the so-called First Visit Time Lemma (FVTL), originally presented by Cooper and Frieze in its first formulation in Cooper and Frieze (2005), and then used and refined in a list of papers by Cooper, Frieze and coauthors. We work in the original setting, considering a growing sequence of irreducible Markov chains on n states. We assume that the chain is rapidly mixing and with a stationary measure with no entry being either too small nor too large. Under these assumptions, the FVTL shows the exponential decay of the distribution of the hitting time of a given state x—for the chain started at stationarity—up to a small multiplicative correction. While the proof by Cooper and Frieze is based on tools from complex analysis, and it requires an additional assumption on a generating function, we present a completely probabilistic proof, relying on the theory of quasi-stationary distributions and on strong-stationary times arguments. In addition, under the same set of assumptions, we provide some quantitative control on the Doob’s transform of the chain on the complement of the state x.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.