Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract
{"title":"Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract","authors":"M. Ebrahimzadeh, S. R. Alizadeh, Z. Hashemi","doi":"10.5155/eurjchem.14.2.202-210.2406","DOIUrl":null,"url":null,"abstract":"The green technique is a unique way to produce functional nanoparticles. We examined the green synthesis of Ag nanoparticles (O-AgNPs) by the extract of Oxalis corniculata. Green-synthesized O-AgNPs were accomplished by monitoring critical factors such as concentration, pH, reaction time, and temperature. Several analytical techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and UV-Vis spectroscopy, were applied to characterize O-AgNPs. The SEM analysis showed O-AgNPs with a spherical shape and an average size of 33.57 nm. The XRD pattern indicated the face-centered cubic (fcc) structure of the prepared O-AgNPs. The anticancer activity of the synthesized O-AgNPs was investigated in MCF-7 (breast) and AGS (gastric) cell lines, indicating high anticancer effects against selected cell lines. The growth of all selected bacteria containing Gram+ and Gram- was inhibited by O-AgNPs. O-AgNPs showed greater inhibition in comparison to conventional antibiotics. As a result, our green synthesized AgNPs using plant extracts exhibited anticancer and antibacterial activities.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of chemistry (Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5155/eurjchem.14.2.202-210.2406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The green technique is a unique way to produce functional nanoparticles. We examined the green synthesis of Ag nanoparticles (O-AgNPs) by the extract of Oxalis corniculata. Green-synthesized O-AgNPs were accomplished by monitoring critical factors such as concentration, pH, reaction time, and temperature. Several analytical techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and UV-Vis spectroscopy, were applied to characterize O-AgNPs. The SEM analysis showed O-AgNPs with a spherical shape and an average size of 33.57 nm. The XRD pattern indicated the face-centered cubic (fcc) structure of the prepared O-AgNPs. The anticancer activity of the synthesized O-AgNPs was investigated in MCF-7 (breast) and AGS (gastric) cell lines, indicating high anticancer effects against selected cell lines. The growth of all selected bacteria containing Gram+ and Gram- was inhibited by O-AgNPs. O-AgNPs showed greater inhibition in comparison to conventional antibiotics. As a result, our green synthesized AgNPs using plant extracts exhibited anticancer and antibacterial activities.