Port-Hamiltonian formulations of poroelastic network models

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R. Altmann, V. Mehrmann, B. Unger
{"title":"Port-Hamiltonian formulations of poroelastic network models","authors":"R. Altmann, V. Mehrmann, B. Unger","doi":"10.1080/13873954.2021.1975137","DOIUrl":null,"url":null,"abstract":"ABSTRACT We investigate an energy-based formulation of the two-field poroelasticity model and the related multiple-network model as they appear in geosciences or medical applications. We propose a port-Hamiltonian formulation of the system equations, which is beneficial for preserving important system properties after discretization or model-order reduction. For this, we include the commonly omitted second-order term and consider the corresponding first-order formulation. The port-Hamiltonian formulation of the quasi-static case is then obtained by (formally) setting the second-order term zero. Further, we interpret the poroelastic equations as an interconnection of a network of submodels with internal energies, adding a control-theoretic understanding of the poroelastic equations.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"429 - 452"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1975137","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 20

Abstract

ABSTRACT We investigate an energy-based formulation of the two-field poroelasticity model and the related multiple-network model as they appear in geosciences or medical applications. We propose a port-Hamiltonian formulation of the system equations, which is beneficial for preserving important system properties after discretization or model-order reduction. For this, we include the commonly omitted second-order term and consider the corresponding first-order formulation. The port-Hamiltonian formulation of the quasi-static case is then obtained by (formally) setting the second-order term zero. Further, we interpret the poroelastic equations as an interconnection of a network of submodels with internal energies, adding a control-theoretic understanding of the poroelastic equations.
孔隙弹性网络模型的Port Hamilton公式
摘要:我们研究了双场孔隙弹性模型和相关的多网络模型在地球科学或医学应用中的基于能量的公式。我们提出了系统方程的端口哈密顿公式,这有利于在离散化或模型降阶后保持重要的系统性质。为此,我们包括了通常省略的二阶项,并考虑了相应的一阶公式。然后通过(形式上)设置二阶项为零,获得准静态情况下的端口哈密顿公式。此外,我们将孔隙弹性方程解释为具有内能的子模型网络的互连,增加了对孔隙弹性方程的控制理论理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信