Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line

IF 2.3 1区 数学 Q1 MATHEMATICS
Jacek Jendrej, M. Kowalczyk, A. Lawrie
{"title":"Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line","authors":"Jacek Jendrej, M. Kowalczyk, A. Lawrie","doi":"10.1215/00127094-2022-0050","DOIUrl":null,"url":null,"abstract":"This paper concerns classical nonlinear scalar field models on the real line. If the potential is a symmetric double-well, such a model admits static solutions called kinks and antikinks, which are perhaps the simplest examples of topological solitons. We study pure multi-kinks, which are solutions that converge in one infinite time direction to a superposition of a finite number of kinks and antikinks, without radiation. Our main result is a complete classification of all kink-antikink pairs in the strongly interacting regime, which means the speeds of the kinks tend asymptotically to zero. We show that up to translation there is only one such solution, and we give a precise description of the dynamics of the kink separation. We also establish the existence of strongly interacting $K$-multi-kinks, for any natural number $K$.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0050","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

Abstract

This paper concerns classical nonlinear scalar field models on the real line. If the potential is a symmetric double-well, such a model admits static solutions called kinks and antikinks, which are perhaps the simplest examples of topological solitons. We study pure multi-kinks, which are solutions that converge in one infinite time direction to a superposition of a finite number of kinks and antikinks, without radiation. Our main result is a complete classification of all kink-antikink pairs in the strongly interacting regime, which means the speeds of the kinks tend asymptotically to zero. We show that up to translation there is only one such solution, and we give a precise description of the dynamics of the kink separation. We also establish the existence of strongly interacting $K$-multi-kinks, for any natural number $K$.
直线上标量场的强相互作用扭结-反扭结对动力学
本文研究了实线上的经典非线性标量场模型。如果势是对称的双阱,这样的模型就会有称为扭结和反扭结的静态解,这可能是拓扑孤子最简单的例子。我们研究了纯多扭结,它是在一个无限时间方向上收敛于有限数量的扭结和反扭结的叠加的解,没有辐射。我们的主要结果是在强相互作用域中所有扭结-反扭结对的完全分类,这意味着扭结的速度渐近于零。我们证明了在平移之前只有一个这样的解,并且我们给出了扭结分离动力学的精确描述。对于任意自然数,我们也证明了强相互作用K -多扭结的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信