Collapse Limit of Thermally Treated Line Pipe under Combined External Pressure and Bending Deformation

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
T. Sakimoto, Hisakazu Tajika, T. Handa, S. Igi, J. Kondo
{"title":"Collapse Limit of Thermally Treated Line Pipe under Combined External Pressure and Bending Deformation","authors":"T. Sakimoto, Hisakazu Tajika, T. Handa, S. Igi, J. Kondo","doi":"10.1115/1.4056186","DOIUrl":null,"url":null,"abstract":"\n This study discusses the collapse criteria for thermally-treated line pipe and their bending interaction against collapse based on a full-scale test under external pressure with and without bending loading. The critical collapse strain in the pressure bending test was much higher than that estimated by the DNV-ST-F101 standard because it was calculated based on estimating collapse pressures without bending interaction based on SMYS of design pipe in the standard. However, the collapse pressures without bending interaction in fullscale test was significantly higher than that of the estimation according to DNV-ST-F101 standard. The effect of the thermal heat cycle simulated anti-corrosion coating heating on line pipe collapse criteria is also discussed based on the change of yield stress of pre-strained and thermally-treated material. As the maximum heat cycle temperature increases, the reduction of the compressive yield stress along circumferential direction by the Baushinger effect due to UOE process becomes small. It is thought that a DNV equation for estimating the critical bending strain to collapse will provide a more accurate estimation of the critical collapse pressure and strain for thermally-treated line pipe when the collapse pressure is calculated considering the change of strength parameters due to the tensile pre-strain level and heat cycle temperature.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study discusses the collapse criteria for thermally-treated line pipe and their bending interaction against collapse based on a full-scale test under external pressure with and without bending loading. The critical collapse strain in the pressure bending test was much higher than that estimated by the DNV-ST-F101 standard because it was calculated based on estimating collapse pressures without bending interaction based on SMYS of design pipe in the standard. However, the collapse pressures without bending interaction in fullscale test was significantly higher than that of the estimation according to DNV-ST-F101 standard. The effect of the thermal heat cycle simulated anti-corrosion coating heating on line pipe collapse criteria is also discussed based on the change of yield stress of pre-strained and thermally-treated material. As the maximum heat cycle temperature increases, the reduction of the compressive yield stress along circumferential direction by the Baushinger effect due to UOE process becomes small. It is thought that a DNV equation for estimating the critical bending strain to collapse will provide a more accurate estimation of the critical collapse pressure and strain for thermally-treated line pipe when the collapse pressure is calculated considering the change of strength parameters due to the tensile pre-strain level and heat cycle temperature.
外压与弯曲变形复合作用下热处理管线的坍塌极限
本文通过外压和无弯曲载荷下的全尺寸试验,探讨了热处理管线的坍塌准则及其弯曲相互作用。压力弯曲试验的临界坍塌应变是在标准中基于设计管道的SMYS估计无弯曲相互作用的坍塌压力的基础上计算的,因此远远高于DNV-ST-F101标准估计的临界坍塌应变。然而,在无弯曲相互作用的情况下,实尺试验的破坏压力明显高于DNV-ST-F101标准的估计。基于预应变和热处理材料屈服应力的变化,讨论了热循环模拟防腐涂层加热对管道坍塌准则的影响。随着最大热循环温度的升高,UOE过程引起的包辛格效应对压缩屈服应力沿周向的降低作用变小。认为,考虑拉伸预应变水平和热循环温度对强度参数的影响,在计算热处理管线坍塌压力时,采用DNV方程估算管线坍塌临界弯曲应变,可以更准确地估算管线的临界坍塌压力和应变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信