{"title":"Point-block incomplete LU preconditioning with asynchronous iterations on GPU for multiphysics problems","authors":"Wenpeng Ma, X. Cai","doi":"10.1177/1094342020981153","DOIUrl":null,"url":null,"abstract":"Point-block matrices arise naturally in multiphysics problems when all variables associated with a mesh point are ordered together, and are different from the general block matrices since the sizes of the blocks are so small one can often invert some of the diagonal blocks explicitly. Motivated by the recent works of Chow and Patel and Chow et al., we propose an efficient incomplete LU (ILU) preconditioner for point-block matrices targeting applications on GPU. The construction of the preconditioner involves two critical steps: (1) the initial guessing of values for the lower and upper triangular matrices; and (2) several sweeps of asynchronous updating of the triangular matrices. Three representative problems are studied to show the advantage of the proposed point-block approach over the standard point-wise approach in terms of the number of GMRES iterations and also the total compute time. Moreover, we compare the proposed algorithm with the level-scheduling based parallel algorithm employed in NVIDIA’s cuSPARSE library as well as the serial method implemented in Intel MKL library, and the experiments show that a 2×–5× speedup can be achieved over the block-based ILU(p) factorizations from the cuSPARSE library.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"35 1","pages":"121 - 135"},"PeriodicalIF":3.5000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1094342020981153","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/1094342020981153","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Point-block matrices arise naturally in multiphysics problems when all variables associated with a mesh point are ordered together, and are different from the general block matrices since the sizes of the blocks are so small one can often invert some of the diagonal blocks explicitly. Motivated by the recent works of Chow and Patel and Chow et al., we propose an efficient incomplete LU (ILU) preconditioner for point-block matrices targeting applications on GPU. The construction of the preconditioner involves two critical steps: (1) the initial guessing of values for the lower and upper triangular matrices; and (2) several sweeps of asynchronous updating of the triangular matrices. Three representative problems are studied to show the advantage of the proposed point-block approach over the standard point-wise approach in terms of the number of GMRES iterations and also the total compute time. Moreover, we compare the proposed algorithm with the level-scheduling based parallel algorithm employed in NVIDIA’s cuSPARSE library as well as the serial method implemented in Intel MKL library, and the experiments show that a 2×–5× speedup can be achieved over the block-based ILU(p) factorizations from the cuSPARSE library.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.