Bahattin Bozdağ, A. Özdemir, Mehmet Hamurcu, C. Özdemir, E. Hakki, S. Gezgin
{"title":"Numerical and statistical evaluation of nitric oxide effect on leaf anatomy of Triticum genotypes under salinity stress","authors":"Bahattin Bozdağ, A. Özdemir, Mehmet Hamurcu, C. Özdemir, E. Hakki, S. Gezgin","doi":"10.15406/jmen.2020.08.00299","DOIUrl":null,"url":null,"abstract":"Bread wheat ( Triticum L.) with a very high economic value and great importance for human consumption is extensively cultivated worldwide. However, the wheat genotypes used experience significant yield loss when exposed to salinity conditions due to the fact that salt is a factor that affects plant metabolism. Nitric oxide, a well-known signalling molecule due to its therapeutic effects on human but produced internally also by plant species, can be utilized to ameliorate the adverse effects of the salinity stress conditions of plants. In this study, the changes caused by external nitric oxide applications on leaves anatomy of two bread wheat genotypes exposed to salinity stress were determined. The results were evaluated statistically by using numerical data obtained from the anatomical measurements.","PeriodicalId":91326,"journal":{"name":"Journal of microbiology & experimentation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology & experimentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/jmen.2020.08.00299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bread wheat ( Triticum L.) with a very high economic value and great importance for human consumption is extensively cultivated worldwide. However, the wheat genotypes used experience significant yield loss when exposed to salinity conditions due to the fact that salt is a factor that affects plant metabolism. Nitric oxide, a well-known signalling molecule due to its therapeutic effects on human but produced internally also by plant species, can be utilized to ameliorate the adverse effects of the salinity stress conditions of plants. In this study, the changes caused by external nitric oxide applications on leaves anatomy of two bread wheat genotypes exposed to salinity stress were determined. The results were evaluated statistically by using numerical data obtained from the anatomical measurements.