Strict comparison for the Lyapunov exponents of the simple random walk in random potentials

Pub Date : 2020-10-17 DOI:10.30757/alea.v20-36
Naoki Kubota
{"title":"Strict comparison for the Lyapunov exponents of the simple random walk in random potentials","authors":"Naoki Kubota","doi":"10.30757/alea.v20-36","DOIUrl":null,"url":null,"abstract":"We consider the simple random walk in i.i.d. nonnegative potentials on the $d$-dimensional cubic lattice $\\mathbb{Z}^d$ ($d \\geq 1$). In this model, the so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential. The Lyapunov exponent depends on the distribution function of the potential, and the aim of this article is to prove that the Lyapunov exponent is strictly monotone in the distribution function of the potential with the order according to strict dominance. In particular, for the one-dimensional annealed situation, we observe that the Lyapunov exponents can coincide even under the strict dominance. Furthermore, the comparison for the Lyapunov exponent also provides that for the rate function of this model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the simple random walk in i.i.d. nonnegative potentials on the $d$-dimensional cubic lattice $\mathbb{Z}^d$ ($d \geq 1$). In this model, the so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential. The Lyapunov exponent depends on the distribution function of the potential, and the aim of this article is to prove that the Lyapunov exponent is strictly monotone in the distribution function of the potential with the order according to strict dominance. In particular, for the one-dimensional annealed situation, we observe that the Lyapunov exponents can coincide even under the strict dominance. Furthermore, the comparison for the Lyapunov exponent also provides that for the rate function of this model.
分享
查看原文
随机势中简单随机游动Lyapunov指数的严格比较
我们考虑在$d$维立方晶格$\mathbb{Z}^d$ ($d \geq 1$)上的i - id非负电位的简单随机漫步。在这个模型中,所谓的李雅普诺夫指数描述了在势能中进行简单随机漫步的旅行成本。李雅普诺夫指数依赖于势的分布函数,本文的目的是证明在势的分布函数中,李雅普诺夫指数是严格单调的,其阶根据严格的优势性。特别地,对于一维退火情况,我们观察到Lyapunov指数即使在严格的支配下也可以重合。此外,对李雅普诺夫指数的比较也提供了该模型的速率函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信