E. Konopkina, P. Matveev, A. Kharcheva, Tsagana B. Sumynova, A. Pozdeev, Daniil A. Novichkov, A. Trigub, P. Kalle, A. Kirsanova, S. Kalmykov, V. Petrov, N. Borisova
{"title":"Solvent Extraction and Complexation Studies of Pyridine-di-Phosphonates with Lanthanides(III) in Solutions","authors":"E. Konopkina, P. Matveev, A. Kharcheva, Tsagana B. Sumynova, A. Pozdeev, Daniil A. Novichkov, A. Trigub, P. Kalle, A. Kirsanova, S. Kalmykov, V. Petrov, N. Borisova","doi":"10.1080/07366299.2023.2214175","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this work, we studied the complex formation (1H, 31P NMR-titration, UV–vis titration, luminescent titration) and solvent extraction of lanthanides with pyridine diphosphonates. The stoichiometry of the complexes was determined: ML and ML2 forms are present. This is confirmed by all of the above methods. It was found that the pyridine ring and P=O groups are involved in the coordination of the metal cation. The coordination environment of the Eu(III) cation was studied more thoroughly using the EXAFS method in solution. Coordination numbers and distances were determined for the complex in solution. The influence of the lanthanide radius on the value of the stability constant was shown. The change in extraction efficiency in the series of lanthanide is described. A new pattern, unusual for other phosphorus-containing ligands, was obtained. To explain the change in the parameters of complexation depending on the system, DFT calculations were carried out. The effect of various initial states of the extracted cations was shown. The initial state with a large amount of nitrates corresponds to a two-phase system during extraction, and with a smaller amount, to a single-phase system with acetonitrile. Additionally, the luminescent properties of the complexes were described in detail as one more applied aspect of the work. . GRAPHICAL ABSTRACT","PeriodicalId":22002,"journal":{"name":"Solvent Extraction and Ion Exchange","volume":"41 1","pages":"627 - 653"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction and Ion Exchange","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/07366299.2023.2214175","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this work, we studied the complex formation (1H, 31P NMR-titration, UV–vis titration, luminescent titration) and solvent extraction of lanthanides with pyridine diphosphonates. The stoichiometry of the complexes was determined: ML and ML2 forms are present. This is confirmed by all of the above methods. It was found that the pyridine ring and P=O groups are involved in the coordination of the metal cation. The coordination environment of the Eu(III) cation was studied more thoroughly using the EXAFS method in solution. Coordination numbers and distances were determined for the complex in solution. The influence of the lanthanide radius on the value of the stability constant was shown. The change in extraction efficiency in the series of lanthanide is described. A new pattern, unusual for other phosphorus-containing ligands, was obtained. To explain the change in the parameters of complexation depending on the system, DFT calculations were carried out. The effect of various initial states of the extracted cations was shown. The initial state with a large amount of nitrates corresponds to a two-phase system during extraction, and with a smaller amount, to a single-phase system with acetonitrile. Additionally, the luminescent properties of the complexes were described in detail as one more applied aspect of the work. . GRAPHICAL ABSTRACT
期刊介绍:
Solvent Extraction and Ion Exchange is an international journal that publishes original research papers, reviews, and notes that address all aspects of solvent extraction, ion exchange, and closely related methods involving, for example, liquid membranes, extraction chromatography, supercritical fluids, ionic liquids, microfluidics, and adsorption. We welcome submissions that look at: The underlying principles in solvent extraction and ion exchange; Solvent extraction and ion exchange process development; New materials or reagents, their syntheses and properties; Computational methods of molecular design and simulation; Advances in equipment, fluid dynamics, and engineering; Interfacial phenomena, kinetics, and coalescence; Spectroscopic and diffraction analysis of structure and dynamics; Host-guest chemistry, ion receptors, and molecular recognition.