Non-uniform L1/DG method for one-dimensional time-fractional convection equation

IF 1.1 Q2 MATHEMATICS, APPLIED
Zhen Wang
{"title":"Non-uniform L1/DG method for one-dimensional time-fractional convection equation","authors":"Zhen Wang","doi":"10.22034/CMDE.2020.41761.1805","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient numerical method to solve a one-dimensional time-fractional convection equation whose solution has a certain weak regularity at the starting time, where the time-fractional derivative in the Caputo sense with order in (0,1) is discretized by the L1 finite difference method on non-uniform meshes and the spatial derivative by the discontinuous Galerkin (DG) finite element method. The stability and convergence of the method are analyzed. Numerical experiments are provided to confirm the theoretical results.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.41761.1805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an efficient numerical method to solve a one-dimensional time-fractional convection equation whose solution has a certain weak regularity at the starting time, where the time-fractional derivative in the Caputo sense with order in (0,1) is discretized by the L1 finite difference method on non-uniform meshes and the spatial derivative by the discontinuous Galerkin (DG) finite element method. The stability and convergence of the method are analyzed. Numerical experiments are provided to confirm the theoretical results.
一维时间分数对流方程的非均匀L1/DG方法
本文给出了求解一维时间-分数阶对流方程的有效数值方法,该方程的解在起始时间具有一定的弱正则性,其中在(0,1)阶的Caputo意义上的时间-分数阶导数在非均匀网格上用L1有限差分法离散,空间导数用不连续Galerkin (DG)有限元法离散。分析了该方法的稳定性和收敛性。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信