On the quotient set of the distance set

Q4 Mathematics
A. Iosevich, D. Koh, Hans Parshall
{"title":"On the quotient set of the distance set","authors":"A. Iosevich, D. Koh, Hans Parshall","doi":"10.2140/moscow.2019.8.103","DOIUrl":null,"url":null,"abstract":"Let ${\\Bbb F}_q$ be a finite field of order $q.$ We prove that if $d\\ge 2$ is even and $E \\subset {\\Bbb F}_q^d$ with $|E| \\ge 9q^{\\frac{d}{2}}$ then $$ {\\Bbb F}_q=\\frac{\\Delta(E)}{\\Delta(E)}=\\left\\{ \\frac{a}{b}: a \\in \\Delta(E), b \\in \\Delta(E) \\backslash \\{0\\} \\right\\},$$ where $$ \\Delta(E)=\\{||x-y||: x,y \\in E\\}, \\ ||x||=x_1^2+x_2^2+\\cdots+x_d^2.$$ If the dimension $d$ is odd and $E\\subset \\mathbb F_q^d$ with $|E|\\ge 6q^{\\frac{d}{2}},$ then $$ \\{0\\}\\cup\\mathbb F_q^+ \\subset \\frac{\\Delta(E)}{\\Delta(E)},$$ where $\\mathbb F_q^+$ denotes the set of nonzero quadratic residues in $\\mathbb F_q.$ Both results are, in general, best possible, including the conclusion about the nonzero quadratic residues in odd dimensions.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.103","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

Let ${\Bbb F}_q$ be a finite field of order $q.$ We prove that if $d\ge 2$ is even and $E \subset {\Bbb F}_q^d$ with $|E| \ge 9q^{\frac{d}{2}}$ then $$ {\Bbb F}_q=\frac{\Delta(E)}{\Delta(E)}=\left\{ \frac{a}{b}: a \in \Delta(E), b \in \Delta(E) \backslash \{0\} \right\},$$ where $$ \Delta(E)=\{||x-y||: x,y \in E\}, \ ||x||=x_1^2+x_2^2+\cdots+x_d^2.$$ If the dimension $d$ is odd and $E\subset \mathbb F_q^d$ with $|E|\ge 6q^{\frac{d}{2}},$ then $$ \{0\}\cup\mathbb F_q^+ \subset \frac{\Delta(E)}{\Delta(E)},$$ where $\mathbb F_q^+$ denotes the set of nonzero quadratic residues in $\mathbb F_q.$ Both results are, in general, best possible, including the conclusion about the nonzero quadratic residues in odd dimensions.
在距离集的商集上
让 ${\Bbb F}_q$ 是一个有限的有序域 $q.$ 我们证明如果 $d\ge 2$ 是偶数且 $E \subset {\Bbb F}_q^d$ 有 $|E| \ge 9q^{\frac{d}{2}}$ 然后 $$ {\Bbb F}_q=\frac{\Delta(E)}{\Delta(E)}=\left\{ \frac{a}{b}: a \in \Delta(E), b \in \Delta(E) \backslash \{0\} \right\},$$ 在哪里 $$ \Delta(E)=\{||x-y||: x,y \in E\}, \ ||x||=x_1^2+x_2^2+\cdots+x_d^2.$$ 如果维度 $d$ 是奇数和 $E\subset \mathbb F_q^d$ 有 $|E|\ge 6q^{\frac{d}{2}},$ 然后 $$ \{0\}\cup\mathbb F_q^+ \subset \frac{\Delta(E)}{\Delta(E)},$$ 在哪里 $\mathbb F_q^+$ 中的非零二次残的集合 $\mathbb F_q.$ 一般来说,这两个结果都是最好的,包括关于奇维非零二次残的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信