On the Integer-antimagic Spectra of Non-Hamiltonian Graphs

Q4 Mathematics
W. Shiu, R. Low
{"title":"On the Integer-antimagic Spectra of Non-Hamiltonian Graphs","authors":"W. Shiu, R. Low","doi":"10.20429/tag.2022.090208","DOIUrl":null,"url":null,"abstract":"Let A be a nontrivial abelian group. A connected simple graph G = ( V, E ) is A antimagic if there exists an edge labeling f : E ( G ) → A \\ { 0 } such that the induced vertex labeling f + : V ( G ) → A , defined by f + ( v ) = Σ { f ( u, v ) : ( u, v ) ∈ E ( G ) } , is a one-to-one map. In this paper, we analyze the group-antimagic property for Cartesian products, hexagonal nets and theta graphs.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a nontrivial abelian group. A connected simple graph G = ( V, E ) is A antimagic if there exists an edge labeling f : E ( G ) → A \ { 0 } such that the induced vertex labeling f + : V ( G ) → A , defined by f + ( v ) = Σ { f ( u, v ) : ( u, v ) ∈ E ( G ) } , is a one-to-one map. In this paper, we analyze the group-antimagic property for Cartesian products, hexagonal nets and theta graphs.
非哈密顿图的整数-反幻谱
设A是一个非平凡阿贝尔群。连通的简单图G=(V,E)是反能的,如果存在边标记f:E(G)→ 使得诱导的顶点标记f+:V(G)→ 定义为f+(v)=∑{f(u,v):(u,v)∈E(G)}的A是一对一映射。本文分析了笛卡儿积、六方网和θ图的群反映射性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信