Experimental strain‐based vibration control to obtain the fatigue strain limit by the staircase method

IF 1.8 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Strain Pub Date : 2022-01-06 DOI:10.1111/str.12408
Lu Shi, L. Khalij, C. Gautrelet
{"title":"Experimental strain‐based vibration control to obtain the fatigue strain limit by the staircase method","authors":"Lu Shi, L. Khalij, C. Gautrelet","doi":"10.1111/str.12408","DOIUrl":null,"url":null,"abstract":"This study is a combination of constant amplitude fatigue experimental tests with strain control technique and staircase method to assess the fatigue strain limit (FSL). The strain control provides a dwell‐fatigue test to the failure by a strain gauge bonded to the reduced section center of the specimen. A staircase test procedure with a vibration bending bench is detailed in this work, including parameters selection. The result analysis is based on kernel density estimation, used to access the FSL on non‐parameter distribution. Low‐carbon steel specimens with fatigue zone were selected to evaluate the FSL statistical features. The results highlight the efficiency of the strain‐controlled staircase method to reach the FSL.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12408","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 3

Abstract

This study is a combination of constant amplitude fatigue experimental tests with strain control technique and staircase method to assess the fatigue strain limit (FSL). The strain control provides a dwell‐fatigue test to the failure by a strain gauge bonded to the reduced section center of the specimen. A staircase test procedure with a vibration bending bench is detailed in this work, including parameters selection. The result analysis is based on kernel density estimation, used to access the FSL on non‐parameter distribution. Low‐carbon steel specimens with fatigue zone were selected to evaluate the FSL statistical features. The results highlight the efficiency of the strain‐controlled staircase method to reach the FSL.
基于实验应变的振动控制,采用阶梯法获得疲劳应变极限
本研究将等幅疲劳试验与应变控制技术和阶梯法相结合,以评估疲劳应变极限(FSL)。应变控制通过连接到试样缩小截面中心的应变计对失效进行停留疲劳测试。本文详细介绍了振动弯曲台的楼梯试验程序,包括参数选择。结果分析基于核密度估计,用于访问非参数分布上的FSL。选择具有疲劳区的低碳钢试样来评估FSL统计特征。结果突出了应变控制阶梯法达到FSL的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strain
Strain 工程技术-材料科学:表征与测试
CiteScore
4.10
自引率
4.80%
发文量
27
期刊介绍: Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage. Strain welcomes papers that deal with novel work in the following areas: experimental techniques non-destructive evaluation techniques numerical analysis, simulation and validation residual stress measurement techniques design of composite structures and components impact behaviour of materials and structures signal and image processing transducer and sensor design structural health monitoring biomechanics extreme environment micro- and nano-scale testing method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信