Computational Study for the Aromatic Nucleophilic Substitution Reaction on 1-Dimethylamino-2,4-bis(trifluoroacetyl)-naphthalene with Amines

N. Ota, Tomohiro Nakada, Takumi Shintani, Y. Kamitori, E. Okada*
{"title":"Computational Study for the Aromatic Nucleophilic Substitution Reaction on 1-Dimethylamino-2,4-bis(trifluoroacetyl)-naphthalene with Amines","authors":"N. Ota, Tomohiro Nakada, Takumi Shintani, Y. Kamitori, E. Okada*","doi":"10.4236/IJOC.2018.83020","DOIUrl":null,"url":null,"abstract":"Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,4-bis(trifluoroacetyl)-naphthalene 1 in acetonitrile. The DFT calculation study (B3LYP/6-31G* with solvation model) for the reactions of 1 with above four amines rationally explained the difference of each amines reactivity based on the energies of their Meisenheimer complexes 3 which are assumed to formed as the reaction intermediates in the course of the reaction giving the corresponding N-N exchange products 2. Intramolecular hydrogen bond between amino proton in 1-amino group and carbonyl oxygen in 2-trifluoroacetyl group stabilizes Meisenheimer complexes 3 effectively, and accelerates the substitution reaction from 1 to 2. Our calculation results also predicted that the above order of amines is also true if less polar toluene is used as a solvent instead of acetonitrile even though more enhanced conditions are required.","PeriodicalId":64796,"journal":{"name":"有机化学国际期刊(英文)","volume":"8 1","pages":"273-281"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"有机化学国际期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/IJOC.2018.83020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,4-bis(trifluoroacetyl)-naphthalene 1 in acetonitrile. The DFT calculation study (B3LYP/6-31G* with solvation model) for the reactions of 1 with above four amines rationally explained the difference of each amines reactivity based on the energies of their Meisenheimer complexes 3 which are assumed to formed as the reaction intermediates in the course of the reaction giving the corresponding N-N exchange products 2. Intramolecular hydrogen bond between amino proton in 1-amino group and carbonyl oxygen in 2-trifluoroacetyl group stabilizes Meisenheimer complexes 3 effectively, and accelerates the substitution reaction from 1 to 2. Our calculation results also predicted that the above order of amines is also true if less polar toluene is used as a solvent instead of acetonitrile even though more enhanced conditions are required.
1-二甲氨基-2,4-二(三氟乙酰基)-萘与胺的芳香亲核取代反应的计算研究
我们前期的研究表明,脂肪族胺在乙腈中亲核取代1-二甲胺-2,4-二(三氟乙酰基)-萘1的芳香族亲核取代上的高活性顺序为“乙胺>氨> t-丁胺>二乙胺”。1与上述四种胺的反应的DFT计算研究(B3LYP/6-31G*,溶剂化模型),根据假设在反应过程中形成的中间体Meisenheimer配合物3的能量,给出相应的N-N交换产物2,合理解释了每种胺的反应活性差异。1-氨基氨基质子与2-三氟乙酰基羰基氧之间的分子内氢键有效地稳定了Meisenheimer配合物3,加速了从1到2的取代反应。我们的计算结果还预测,如果使用较少极性的甲苯代替乙腈作为溶剂,即使需要更强的条件,上述胺的顺序也是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
297
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信