Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Dalila-Mercedes Pachajoa, Héctor-Andrés Mora-Paz, D. Mayorca-Torres
{"title":"Comparison of Kernel Functions in the Classification of Irradiance Zones from Multispectral Satellite Images","authors":"Dalila-Mercedes Pachajoa, Héctor-Andrés Mora-Paz, D. Mayorca-Torres","doi":"10.19053/01211129.v30.n58.2021.13845","DOIUrl":null,"url":null,"abstract":"Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are studies for obtaining regression models with alternative Kernel functions, their performance for classification models is unknown and it is here where this research focuses. The study couples alternative Kernel functions to the support vector machines (SVM) algorithm for classification problems, where the best configuration for these algorithms is explored to finally obtain a set of irradiance maps zoned by class.","PeriodicalId":42846,"journal":{"name":"Revista Facultad de Ingenieria, Universidad Pedagogica y Tecnologica de Colombia","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Facultad de Ingenieria, Universidad Pedagogica y Tecnologica de Colombia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19053/01211129.v30.n58.2021.13845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the growing energy demand and the eminent global warming, there is special interest in the prediction of irradiance based on the reflectance obtained from satellites such as NASA Landsat, since it allows to know where it is more efficient to place photovoltaic receivers. Although there are studies for obtaining regression models with alternative Kernel functions, their performance for classification models is unknown and it is here where this research focuses. The study couples alternative Kernel functions to the support vector machines (SVM) algorithm for classification problems, where the best configuration for these algorithms is explored to finally obtain a set of irradiance maps zoned by class.
多光谱卫星图像辐照区分类中的核函数比较
由于不断增长的能源需求和显著的全球变暖,人们对基于美国国家航空航天局陆地卫星等卫星的反射率来预测辐照度特别感兴趣,因为这可以知道在哪里放置光伏接收器更有效。尽管有关于获得具有替代核函数的回归模型的研究,但它们在分类模型中的性能是未知的,这正是本研究的重点。该研究将替代核函数与用于分类问题的支持向量机(SVM)算法相结合,其中探索了这些算法的最佳配置,以最终获得一组按类别划分的辐照度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信