SOLVABILITY OF SOME INTEGRO-DIFFERENTIAL EQUATIONS WITH DRIFT

Pub Date : 2020-04-01 DOI:10.18910/75913
M. Efendiev, V. Vougalter
{"title":"SOLVABILITY OF SOME INTEGRO-DIFFERENTIAL EQUATIONS WITH DRIFT","authors":"M. Efendiev, V. Vougalter","doi":"10.18910/75913","DOIUrl":null,"url":null,"abstract":"We establish the existence in the sense of sequences of solutions for some integrodifferential type equations containing the drift term and the square root of the one dimensional negative Laplacian, on the whole real line or on a finite interval with periodic boundary conditions in the corresponding H spaces. The argument relies on the fixed point technique when the elliptic equations involve first order differential operators with and without Fredholm property. It is proven that, under the reasonable technical assumptions, the convergence in L of the integral kernels implies the existence and convergence in H of solutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/75913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We establish the existence in the sense of sequences of solutions for some integrodifferential type equations containing the drift term and the square root of the one dimensional negative Laplacian, on the whole real line or on a finite interval with periodic boundary conditions in the corresponding H spaces. The argument relies on the fixed point technique when the elliptic equations involve first order differential operators with and without Fredholm property. It is proven that, under the reasonable technical assumptions, the convergence in L of the integral kernels implies the existence and convergence in H of solutions.
分享
查看原文
一类带漂移的积分微分方程的可解性
在相应的H空间中,在具有周期边界条件的整条实线上或有限区间上,建立了一类包含漂移项和一维负拉普拉斯函数平方根的积分微分型方程在序列意义上解的存在性。当椭圆方程包含有Fredholm性质和不含Fredholm性质的一阶微分算子时,该论证依赖于不动点技术。证明了在合理的技术假设下,积分核在L中的收敛意味着解在H中的存在和收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信