CURVE ESTIMATION AND ESTIMATOR PROPERTIES OF THE NONPARAMETRIC REGRESSION TRUNCATED SPLINE WITH A MATRIX APPROACH

N. Fitriyani, I. Budiantara
{"title":"CURVE ESTIMATION AND ESTIMATOR PROPERTIES OF THE NONPARAMETRIC REGRESSION TRUNCATED SPLINE WITH A MATRIX APPROACH","authors":"N. Fitriyani, I. Budiantara","doi":"10.24843/mtk.2022.v11.i01.p362","DOIUrl":null,"url":null,"abstract":"Regression analysis is one of the statistical analyses used to estimate the relationship between the predictor and the response variable. Data are given in pairs, and the relationship between the predictor and the response variable was assumed to follow a nonparametric regression model. This model is flexible in estimating the curve when a typical data pattern does not follow a specific pattern. The nonparametric regression curve was approached by using the truncated spline function with several knots. The truncated spline estimator in nonparametric regression is linear in the observation. It is highly dependent on the knot points. The regression model's random error is assumed to have an independent normal distribution with zero mean and equal variance. The truncated spline's curve estimate was obtained by minimizing the error model through the least squared optimization method. The nonparametric regression truncated spline's estimator properties are linear, unbiased, and if the error is normally distributed, the estimator is normally distributed.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2022.v11.i01.p362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regression analysis is one of the statistical analyses used to estimate the relationship between the predictor and the response variable. Data are given in pairs, and the relationship between the predictor and the response variable was assumed to follow a nonparametric regression model. This model is flexible in estimating the curve when a typical data pattern does not follow a specific pattern. The nonparametric regression curve was approached by using the truncated spline function with several knots. The truncated spline estimator in nonparametric regression is linear in the observation. It is highly dependent on the knot points. The regression model's random error is assumed to have an independent normal distribution with zero mean and equal variance. The truncated spline's curve estimate was obtained by minimizing the error model through the least squared optimization method. The nonparametric regression truncated spline's estimator properties are linear, unbiased, and if the error is normally distributed, the estimator is normally distributed.
非参数回归截断样条曲线的矩阵估计及估计量性质
回归分析是一种用于估计预测因子与响应变量之间关系的统计分析。数据是成对给出的,预测因子和响应变量之间的关系假定遵循非参数回归模型。当典型数据模式不遵循特定模式时,该模型在估计曲线方面是灵活的。采用多节截断样条函数逼近非参数回归曲线。非参数回归的截断样条估计量在观测值上是线性的。它高度依赖于结点。假设回归模型的随机误差为均值为零、方差为等的独立正态分布。通过最小二乘法最小化误差模型,得到截断样条的曲线估计。非参数回归截断样条的估计量是线性的,无偏的,如果误差是正态分布的,则估计量是正态分布的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信