{"title":"Numerical investigation of pressure drop within isothermal capillary rheometry for viscous and viscoelastic fluids","authors":"H. Tseng","doi":"10.1515/ipp-2022-4322","DOIUrl":null,"url":null,"abstract":"Abstract In capillary rheometry of a polymer melt, the total pressure drop consists of three primary components: shear viscosity, extensional viscosity, and normal stress differences. Traditionally, viscoelastic constitutive equations have been used to produce accurate predictions regarding the pressure drop. It is difficult to investigate the primary components in past experimental measurements and numerical computations. The useful improvement of the classic White-Metzner viscoelastic constitutive equation coupled with the weighted shear/extension viscosity is performed in isothermal capillary flow simulations. It is significant to analyze the extension-induced pressure drop for a short die and the shear-induced pressure drop for a long die, along with a small contribution of normal stress differences.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4322","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In capillary rheometry of a polymer melt, the total pressure drop consists of three primary components: shear viscosity, extensional viscosity, and normal stress differences. Traditionally, viscoelastic constitutive equations have been used to produce accurate predictions regarding the pressure drop. It is difficult to investigate the primary components in past experimental measurements and numerical computations. The useful improvement of the classic White-Metzner viscoelastic constitutive equation coupled with the weighted shear/extension viscosity is performed in isothermal capillary flow simulations. It is significant to analyze the extension-induced pressure drop for a short die and the shear-induced pressure drop for a long die, along with a small contribution of normal stress differences.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.